EPSRC logo

Details of Grant 

EPSRC Reference: EP/D053749/1
Title: High-efficiency low-profile antennas with adjustable propagating modes for wireless body area networks
Principal Investigator: Scanlon, Professor WG
Other Investigators:
Linton, Dr D
Researcher Co-Investigators:
Project Partners:
Police Scientific Development Branch Taconic International Ltd. Zarlink
Department: Sch of Electronics, Elec Eng & Comp Sci
Organisation: Queen's University of Belfast
Scheme: Standard Research (Pre-FEC)
Starts: 01 July 2006 Ends: 31 December 2009 Value (£): 340,389
EPSRC Research Topic Classifications:
RF & Microwave Technology
EPSRC Industrial Sector Classifications:
Communications Electronics
Related Grants:
Panel History:  
Summary on Grant Application Form
Wireless Body Area Networking (WBAN) is an important area of emerging technology where a network of bodyworn or personal electronic devices is established, most often using radio communications. A WBAN may also have to support person-person or wider area communications. Therefore, a WBAN is an important and challenging environment for bodyworn antennas since they may be required to support or be configured to yield quite distinct propagating modes such as: on-body only, off-body (e.g., cellular or wireless LAN) only, or some combination of these. In addition, an ideal antenna for WBAN use will be low profile or conformal, efficient with minimal power losses in body tissues and not adversely affected by the user's movements. This work will address these challenges directly by creating and investigating a new class of wideband low-profile patch-antenna elements with reduced groundplane currents (higher efficiency and greater safety) and with a tangential propagating mode for both over the body surface communications. The tangential propagating mode also has the potential for achieving omnidirectional coverage from one antenna element depending on the operating frequency, albeit with additional losses in the through body direction. The achievement of these aims will involve detailed work in the area of patch element design, the use of advanced dielectric materials and will leverage the latest research on electromagnetic metamaterials. Although the work will focus on antennas for the 2.4 GHz industrial, scientific and medical (ISM) band, consideration will be given to lower frequencies down to 400 MHz in support applications such as medical device networking. The project will use both theoretical and numerical analysis and the funding requested will allow the experimental validation of the work, specifically in terms of whole body radiation efficiency measurements and radio-over-fibre measurements of on-body antenna element coupling.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.qub.ac.uk