EPSRC Reference: |
EP/E02243X/1 |
Title: |
A kinetic algorithm for modelling the droplet evaporation process in the presence of a heat flux and background gas |
Principal Investigator: |
Sazhin, Professor S |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Sch of Engineering |
Organisation: |
University of Brighton |
Scheme: |
Standard Research |
Starts: |
18 April 2007 |
Ends: |
17 January 2008 |
Value (£): |
21,930
|
EPSRC Research Topic Classifications: |
Combustion |
Heat & Mass Transfer |
|
EPSRC Industrial Sector Classifications: |
No relevance to Underpinning Sectors |
|
|
Related Grants: |
|
Panel History: |
|
Summary on Grant Application Form |
Although the droplet evaporation process is essentially a kinetic one (its description requires the analysis of the distribution function of molecules), in practical engineering applications its analysis is almost universally based on the hydrodynamic approximation. Recent papers published by the PI, together with researchers from the Moscow Power Engineering Institute, point out that the latter approximation may lead to noticeable underestimates of the evaporation time of droplets in diesel engines, where the applicability of this approximation has never, to the best of our knowledge, been questioned. This conclusion, however, was made based on the simplistic kinetic model, or the numerical algorithm based on some assumptions, the applicability of which is not at first evident. For example, it was assumed that the contribution of heat flux inside the Knudsen layer can be ignored. The main focus of this work will be on the development of a new model, taking into account both the heat flux in the Knudsen layer and the presence of ambient background gas. It is expected that the temperature at the outer boundary of the Knudsen layer will be found using the condition of matching heat fluxes at the outer boundary of the Knudsen layer. This new model will be applied to the simulation of the evaporation of diesel fuel droplets in the first instance and its wider applicability is anticipated.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.bton.ac.uk |