EPSRC Reference: |
EP/E03103X/1 |
Title: |
Polymeric vesicles with topologically controlled functionalities |
Principal Investigator: |
Battaglia, Professor G |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Materials Science and Engineering |
Organisation: |
University of Sheffield |
Scheme: |
First Grant Scheme |
Starts: |
01 August 2007 |
Ends: |
31 January 2010 |
Value (£): |
208,705
|
EPSRC Research Topic Classifications: |
Biological membranes |
Complex fluids & soft solids |
|
EPSRC Industrial Sector Classifications: |
No relevance to Underpinning Sectors |
|
|
Related Grants: |
|
Panel History: |
|
Summary on Grant Application Form |
We present here an example of nature-inspired 'bottom-up' design that can offer outstanding advantages for engineering structures at a molecular level based on the same long/studied principles of biological structures. We use synthetic materials know as copolymers that have allowed us the design of very robust structures with sizes of hundreds of nanometers (1000 times smaller than human hair). The simplest among these structures formed by copolymers is the vesicle. This is spherical aggregate made of a water core surrounded by a semi-permeable membrane. These nano-spheres have already been used for encapsulating drugs and other molecules. These are then delivered to specific parts of the body so as to minimize drug side-effects. Here we want to expand further the molecular level control by studying the possibility of generating vesicles with patched surfaces. These patches will allow the localization of specific functionalities. Particularly, we present two different immediate applications: vesicles with controlled porosity and self-motile vesicles. In the former, the patches will allow the controlled degradation and formation of stable pores into the vesicles membranes. In the latter, we will generate vesicles with an asymmetric distribution of functional groups. These will subsequently used for attaching molecular motors. This will be the first attempt for designing self-propelled nano-particles.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.shef.ac.uk |