Search this site
Search this site
Home
GoW Home
Back
Research Areas
Topic
Sector
Scheme
Region
Theme
Organisation
Partners
Details of Grant
EPSRC Reference:
EP/E051804/1
Title:
Structural Nanoprobes of Organic Semiconductor Devices
Principal Investigator:
Greenham, Professor N
Other Investigators:
Researcher Co-Investigators:
Project Partners:
North Carolina State University
Department:
Physics
Organisation:
University of Cambridge
Scheme:
Advanced Fellowship
Starts:
10 September 2007
Ends:
09 September 2012
Value (£):
654,090
EPSRC Research Topic Classifications:
Materials Characterisation
Optoelect. Devices & Circuits
EPSRC Industrial Sector Classifications:
Electronics
Related Grants:
Panel History:
Panel Date
Panel Name
Outcome
24 Apr 2007
Materials Fellowships 2007 - Interviews
FinalDecisionYetToBeMade
27 Mar 2007
Materials Fellowships Sift Panel
InvitedForInterview
Summary on Grant Application Form
Organic semiconductors are an exciting new class of material that combine the electronic properties traditionally only associated with inorganic materials, with the mechanical properties and processibility of polymers (plastics) and small organic molecules. In particular, the ability to process active semiconductor layers through solution processing has led to the commercialisation of organic light-emitting diode-based displays. Commercial potential has also been demonstrated by organic transistors and organic solar cells, where both technologies have the advantage of low-cost processing and the ability to be incorporated into flexible architectures.However, as organic semiconductors are a relatively new class of material, there are still many fundamental questions governing key processes that affect device performance. For example, organic semiconductor films are typically less ordered than their inorganic counterparts and the influence of domain structure, molecular orientation and molecular alignment on charge transport is not fully understood. Additionally, for organic solar cells, where typically two different materials are blended together to form efficient networks for charge separation and transport, the influence of material mixing on charge separation and transport are still being discovered.Since organic semiconductors have vastly different properties compared to inorganic semiconductors, the development and application of new techniques to probe the properties of this new class of material is required. This research programme will adapt state-of-the-art microscopes and utilize advanced X-ray analytical techniques to probe structure and device action in organic devices with unprecedented precision and clarity. This further understanding of device operation will allow for the identification of physical processes that limit device performance and hence promote future device optimisation.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:
Further Information:
Organisation Website:
http://www.cam.ac.uk