EPSRC Reference: |
EP/E06454X/1 |
Title: |
Development of air-stable n-channel organic field-effect transistors based on soluble fullerene derivatives |
Principal Investigator: |
Anthopoulos, Professor T |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Physics |
Organisation: |
Imperial College London |
Scheme: |
Standard Research |
Starts: |
01 October 2007 |
Ends: |
30 September 2010 |
Value (£): |
203,533
|
EPSRC Research Topic Classifications: |
Chemical Structure |
Electronic Devices & Subsys. |
Materials Characterisation |
Materials Synthesis & Growth |
|
EPSRC Industrial Sector Classifications: |
|
Related Grants: |
|
Panel History: |
|
Summary on Grant Application Form |
We aim to develop air-stable high mobility (>0.1 cm^2/Vs) electron transporting (n-channel) organic field-effect transistors (OFETs) employing soluble fullerene derivatives. The main motivation for developing n-channel OFETs is that they enable complementary circuit design, a vital ingredient for the fabrication of the next generation large-scale, low-power, high-performance organic integrated circuits. As our material workhorse we choose the family of fullerenes due to their record-breaking electron mobility (~6 cm2/Vs). Emphasis is placed on soluble derivatives due to their processing advantage for large-area, low manufacturing cost applications. The novelty of the proposed work originates from our recent study where the first solution-processed, air-stable n-channel fullerene transistors have been demonstrated. To the best of our knowledge, this unique combination of solubility, ambient stability and electron transporting character has only been demonstrated previously in two organic molecules and can be considered as a significant breakthrough. The subject of the proposed work is very topical with huge technological importance in the area of organic electronics and it is anticipated to have significant impact both in academic research and industrial R&D worldwide.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.imperial.ac.uk |