EPSRC Reference: |
EP/F007922/1 |
Title: |
SHEAR INDUCED DENATURATION OF PROTEINS |
Principal Investigator: |
Blanch, Professor EW |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Life Sciences |
Organisation: |
University of Manchester, The |
Scheme: |
Standard Research |
Starts: |
13 November 2007 |
Ends: |
12 May 2011 |
Value (£): |
323,229
|
EPSRC Research Topic Classifications: |
Biological & Medicinal Chem. |
Rheology |
Tissue Engineering |
|
|
EPSRC Industrial Sector Classifications: |
Pharmaceuticals and Biotechnology |
|
|
Related Grants: |
|
Panel History: |
Panel Date | Panel Name | Outcome |
20 Mar 2007
|
Chemistry/Chemical Engineering 2007
|
Deferred
|
04 Jul 2007
|
Chemistry/Chemical Engineering Full Proposal Panel
|
Announced
|
|
Summary on Grant Application Form |
Proteins are fundamentally important molecules crucial for life and are now becoming widely used in industrial and medical applications. The protein drug industry alone is worth $US300billion per year and is growing quickly. Proteins are highly complex polymers and they have to fold into their correct structures to function effectively. This is not simple and the importance of protein folding has been long recognised and has led to decades of research into protein unfolding (or protein denaturation), with spin offs including medical applications (unfolded proteins can cause deadly diseases such as Alzheimer's and Parkinson's) and scientific technologies (protein unfolding tools are routinely used in biology and chemistry).Although protein unfolding by chemical and thermal means are areas of intensive research, and now mechanical unfolding is being utilised as a new tool in nanobioengineering, virtually nothing is known about unfolding by shear forces in fluids. Any new tool for controlling protein structure and unfolding will be a major breakthrough and the possibility of doing this using fluids (the natural environment for most proteins and most stages of protein preparation in industry), makes shear-flow an incredibly promising tool. However, we must discover the natural laws governing this phenomenon and develop the practical tools to measure and control shear-induced unfolding before we can make use of it.We will conduct the most comprehensive examination of the effects of shear flow on protein structure yet attempted, covering a diverse range of proteins of different shapes and stabilities, investigate the effects of experimental conditions and solvent properties, and use far more sensitive tools than have previously been brought to this problem. Our aim is to not only identify which proteins do or do not undergo unfolding under shear, but to identify and quantify which parts of the protein structure change (this is more physiologically important than just saying a protein does or doesn't unfold), learn the mechanisms of how shear-induced denaturation occurs and develop the methods to control and manipulate protein unfolding. This study will also involve the first comprehensive analysis of laminar and shear flow parameters in relation to proteins, which is required to obtain a true mechanistic understanding of the process.First, we will characterise and quantify the shear parameters of the flow cells to be used (both macro- and micro-fluidic devices) and then identify which proteins, from a widely varied set of targets, do or do not unfold in fluid flows. Different proteins can have greatly different structures and stabilities and it is likely that some proteins will not unfold under our experimental conditions, some will unfold, while others may need assistance to unfold by controlling experimental parameters (pH, viscosity etc.). It will be important to examine a number of very different proteins with different shapes and inherent stabilities to identify general trends or rules, and to identify favourable targets for the second phase of the project.We will then conduct more intensive studies for those proteins found to unfold under shear, with the aim of determining which parts of the protein structure change (which is more important than just knowing if the protein unfolds or not), quantifying these changes, detailing the mechanisms responsible and learning how to manipultae protein unfolding by controlling the solution characteristics (flow rate, viscosity, pH, chemical additives). In this way we will learn which types of proteins are most susceptible to shear flows and why, and we will develop the tools and techniques to control shear induced denaturation, making it a new addition to the protein engineering toolkit.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.man.ac.uk |