EPSRC Reference: |
EP/F010109/1 |
Title: |
Directed Reconfigurable Nanomachines |
Principal Investigator: |
Cadby, Professor AJ |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Physics and Astronomy |
Organisation: |
University of Sheffield |
Scheme: |
Standard Research |
Starts: |
01 May 2008 |
Ends: |
30 April 2011 |
Value (£): |
80,600
|
EPSRC Research Topic Classifications: |
Chemical Synthetic Methodology |
Surfaces & Interfaces |
|
EPSRC Industrial Sector Classifications: |
No relevance to Underpinning Sectors |
|
|
Related Grants: |
|
Panel History: |
|
Summary on Grant Application Form |
Directed Reconfigurable NanomachinesWe propose a scheme to revolutionise the synthesis of nanodevices, nanomachines, and, ultimately, functional materials via the positional assembly of molecules and nanoscale building blocks. Computer-directed actuators will be used to drive (with sub-nanometre to sub-Angstrom precision) the elements of a nanosystem along pre-defined and entirely deterministic trajectories, thereby achieving structures not accessible by mimicking natural assembly strategies alone. Linkages and bonding between the building blocks will also be initiated, modulated, and - in some cases - terminated by direct computer control. Our proposal rests on the parallel development of novel surface-bound, reconfigurable nanoscale building blocks (molecules, functionalised clusters, nanoparticles) and advanced techniques for automated assembly of matter. We focus on the generation of two major and immensely challenging functionalities for positionally-assembled nanomachines: switchable energy transduction and conformationally-driven motion. Our archetypal system comprises the following units: an energy harvester, a switchable/gateable link, and an optical or mechanical output. By arranging, configuring, and triggering these fundamental units our long-term goal is no less than the fabrication of an autonomous, abiotic nanomachine.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.shef.ac.uk |