Search this site
Search this site
Home
GoW Home
Back
Research Areas
Topic
Sector
Scheme
Region
Theme
Organisation
Partners
Details of Grant
EPSRC Reference:
EP/F016166/1
Title:
Quantitative mapping of antiferromagnetic domains in metallic thin films
Principal Investigator:
Schrefl, Professor T
Other Investigators:
Researcher Co-Investigators:
Project Partners:
Department:
Materials Science and Engineering
Organisation:
University of Sheffield
Scheme:
Standard Research
Starts:
15 December 2007
Ends:
14 December 2010
Value (£):
242,461
EPSRC Research Topic Classifications:
Materials Characterisation
EPSRC Industrial Sector Classifications:
Electronics
Related Grants:
EP/F016174/1
Panel History:
Panel Date
Panel Name
Outcome
26 Jul 2007
Materials Prioritisation Panel July 07
Announced
Summary on Grant Application Form
Spin electronics is a novel and rapidly developing field aimed at either adding the spin degree of freedom to conventional charge-based electronic devices (e.g. transistors), or spin manipulation alone. A prominent example for such devices is the read head in magnetic hard disks. Future increase in storage density and data rate requires sensitive, nano-scale devices to read the stored information. A key component in these devices is antiferromagnetic (AF) thin films, which are usually metallic. Through a unique phenomenon of 'exchange-biasing' to ferromagnetic (F) films, a reference memory state is formed. However, the magnetic properties of AF films are still poorly understood because of the inability to resolve spatially their microscopic magnetic structure.This proposed research aims to develop novel simulation codes and transmission electron microscopy imaging methodologies of AF domains in polycrystalline metallic films at the nanometre scale. Magnetic imaging and structural characterization of F films coupled to the underlying AF will reveal information on the AF magnetic structure. These observations will enable to develop the simulation code, thus enhancing our understanding of the micromagnetic properties of AF thin metallic films. We plan to distribute the code developed during this research to interested academic and industrial users.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:
Further Information:
Organisation Website:
http://www.shef.ac.uk