EPSRC logo

Details of Grant 

EPSRC Reference: EP/F016522/1
Title: PROCESS INTENSIFICATION USING HIGH INTENSITY FOCUSSED ULTRASOUND TECHNIQUES
Principal Investigator: Gachagan, Professor A
Other Investigators:
Nordon, Dr A
Researcher Co-Investigators:
Project Partners:
Department: Electronic and Electrical Engineering
Organisation: University of Strathclyde
Scheme: First Grant Scheme
Starts: 01 October 2008 Ends: 31 October 2010 Value (£): 294,258
EPSRC Research Topic Classifications:
Acoustics Design of Process systems
Electronic Devices & Subsys. Reactor Engineering
EPSRC Industrial Sector Classifications:
Chemicals Food and Drink
Pharmaceuticals and Biotechnology
Related Grants:
Panel History:
Panel DatePanel NameOutcome
18 Sep 2007 Engineering Science (Flow) Panel Announced
Summary on Grant Application Form
This work programme aims to adapt the High Intensity Focussed Ultrasound (HIFU) methods used in biomedicine for application in industrial process control systems. Analogous with the current research trends in biomedical HIFU, this research programme will aim to create versatile ultrasonic transducer systems for intensification across a wide range of industrial processes associated with the pharmaceutical and food industries, in particular. A non-invasive pressure measurement facility has been established at Strathclyde (GR/N17928/01) and will be used to provide a platform for the development of array based high power ultrasonic systems designed via a finite element (FE) virtual prototyping environment. Here, the FE code will be used in the system design process to identify regions of high intensity which can be considered as offering the highest potential as sites for a cavitating field under HIFU excitation. A number of transducer configurations will be considered, using a combination of FE simulation and experimental evaluation, for application in an industrial HIFU system including: ultrasonic arrays; an array of discrete ultrasonic devices and an integrated monitoring/HIFU transducer. Once the HIFU techniques have been successfully demonstrated in a laboratory scale reactor vessel, the programme will investigate the challenging task of developing these systems into industrial scale process plant instrumentation. This will encompass new reactor vessel designs, in which the ultrasonic transducer configuration is an integral part of the design process; the influence of increased scattering/damping effects in industrial scale reactors; and the application of HIFU techniques to an in-line sampling loop, if appropriate. The key project aim is to investigate strategies which will realise practical industrial HIFU systems which can satisfy the growing industrial demand for process intensification using high power ultrasound.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.strath.ac.uk