EPSRC Reference: |
EP/F016522/1 |
Title: |
PROCESS INTENSIFICATION USING HIGH INTENSITY FOCUSSED ULTRASOUND TECHNIQUES |
Principal Investigator: |
Gachagan, Professor A |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Electronic and Electrical Engineering |
Organisation: |
University of Strathclyde |
Scheme: |
First Grant Scheme |
Starts: |
01 October 2008 |
Ends: |
31 October 2010 |
Value (£): |
294,258
|
EPSRC Research Topic Classifications: |
Acoustics |
Design of Process systems |
Electronic Devices & Subsys. |
Reactor Engineering |
|
EPSRC Industrial Sector Classifications: |
Chemicals |
Food and Drink |
Pharmaceuticals and Biotechnology |
|
|
Related Grants: |
|
Panel History: |
Panel Date | Panel Name | Outcome |
18 Sep 2007
|
Engineering Science (Flow) Panel
|
Announced
|
|
Summary on Grant Application Form |
This work programme aims to adapt the High Intensity Focussed Ultrasound (HIFU) methods used in biomedicine for application in industrial process control systems. Analogous with the current research trends in biomedical HIFU, this research programme will aim to create versatile ultrasonic transducer systems for intensification across a wide range of industrial processes associated with the pharmaceutical and food industries, in particular. A non-invasive pressure measurement facility has been established at Strathclyde (GR/N17928/01) and will be used to provide a platform for the development of array based high power ultrasonic systems designed via a finite element (FE) virtual prototyping environment. Here, the FE code will be used in the system design process to identify regions of high intensity which can be considered as offering the highest potential as sites for a cavitating field under HIFU excitation. A number of transducer configurations will be considered, using a combination of FE simulation and experimental evaluation, for application in an industrial HIFU system including: ultrasonic arrays; an array of discrete ultrasonic devices and an integrated monitoring/HIFU transducer. Once the HIFU techniques have been successfully demonstrated in a laboratory scale reactor vessel, the programme will investigate the challenging task of developing these systems into industrial scale process plant instrumentation. This will encompass new reactor vessel designs, in which the ultrasonic transducer configuration is an integral part of the design process; the influence of increased scattering/damping effects in industrial scale reactors; and the application of HIFU techniques to an in-line sampling loop, if appropriate. The key project aim is to investigate strategies which will realise practical industrial HIFU systems which can satisfy the growing industrial demand for process intensification using high power ultrasound.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.strath.ac.uk |