EPSRC Reference: |
EP/F02911X/1 |
Title: |
Platform: Textile Composites - Engineering Science and its Applications |
Principal Investigator: |
Long, Professor A |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Sch of Mech Materials Manuf Eng Mgt |
Organisation: |
University of Nottingham |
Scheme: |
Platform Grants |
Starts: |
15 April 2009 |
Ends: |
14 April 2013 |
Value (£): |
842,601
|
EPSRC Research Topic Classifications: |
Biomaterials |
Materials Characterisation |
Materials Processing |
Materials testing & eng. |
|
EPSRC Industrial Sector Classifications: |
Aerospace, Defence and Marine |
Manufacturing |
Transport Systems and Vehicles |
|
|
Related Grants: |
|
Panel History: |
Panel Date | Panel Name | Outcome |
29 Oct 2007
|
Platforms Panel October 2007
|
Announced
|
|
Summary on Grant Application Form |
In our initial Platform Grant (GR/T18578/01) - we have been extremely successful in implementing a predictive modelling strategy at the fibre and textile (reinforcement) scale. This has been complemented by an extensive experimental programme, notably in manufacture of novel fibres and degradable composites and in development and optimisation of automated carbon fibre preforming technologies. Models at fibre scale have developed understanding of degradation for medical implants, mechanics of dry and impregnated tows, and influence of thermal and chemical shrinkage on residual stresses in thermoset composites. RVE models have enabled engineering science models for textile mechanics, fluid permeability, and elastic and failure behaviour for textile composites.Given the above, we propose to implement a multi-scale modelling approach for polymer composites, encompassing models at fibre tow, unit cell (RVE), laminate and component scales. The same philosophy that we have used successfully at the RVE scale, encompassed in the TexGen schema, will be applied - encompassing the critical engineering science within a user-friendly and flexible software environment, made publicly available where commercial considerations allow. For example one crucial area where this will be applied is in yarn/tow modelling, where we need to develop a schema representing fibre arrangements, incorporating statistical information for fibre paths. This will be an essential building block in the modelling strategy, and will be the focus of one of the Research Fellows.The strategy will be underpinned by an extensive experimental programme, validating the models and developing new processing technologies for our target application areas. We do NOT aim primarily to model standard materials or processes with high technology readiness levels; rather we aim to utilise our unique modelling capabilities and understanding to develop exciting new directions. This approach will be applied across our research portfolio, concentrating on:- automated manufacturing and processing- mechanical and physical performance- medical materials- technical textiles
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.nottingham.ac.uk |