EPSRC logo

Details of Grant 

EPSRC Reference: EP/F05890X/1
Title: A Feasibility Study Of A Silicon Enabled Hydrogen Fuel Economy
Principal Investigator: Foord, Professor J
Other Investigators:
Jones, Professor MO Edwards, Professor P
Researcher Co-Investigators:
Project Partners:
Department: Oxford Chemistry
Organisation: University of Oxford
Scheme: Standard Research
Starts: 01 April 2008 Ends: 30 September 2009 Value (£): 324,398
EPSRC Research Topic Classifications:
Materials Characterisation Materials Synthesis & Growth
Sustainable Energy Vectors
EPSRC Industrial Sector Classifications:
No relevance to Underpinning Sectors
Related Grants:
Panel History:
Panel DatePanel NameOutcome
18 Jan 2008 Feasibility Studies for Energy Research II Announced
Summary on Grant Application Form
In the present approach to global energy consumption, a large dependence is placed on the use of fossil fuels, which upon combustion release the so-called greenhouse gas, carbon dioxide, into the atmosphere. Although changes in energy usage patterns, such as increased exploitation of nuclear, solar and wind power for electricity generation could reduce this problem, there is considerable interest in the development of a hydrogen-based energy economy, based on the reaction of hydrogen with oxygen, which yields large amounts of energy and produces nothing more harmful than water as the reaction product. It has been estimated that the hydrogen economy market will grow into the trillion dollar regime within the next 20 years. Hydrogen can be utilized in electrical power-generation systems, most notably in fuel cells for both vehicular transportation and distributed electricity generation, but a crucial aspect will be to develop systems for the on-board' storage of hydrogen at point of use, if the hydrogen economy is to be realised. Unlike petrol which exists in liquid form, hydrogen is a potentially dangerous and explosive gas, so the large scale distribution and storage of hydrogen is fraught with problems.The present project is a feasibility study of a novel concept to avoid this hydrogen distribution problem. Instead, nanopowdered silicon will be produced, by the reduction of silica ( sand ), one of the most abundant compounds in the earth's accessible crust, using sustainable energy sources, and distributed where required. A spontaneous reaction between the nanosilicon and water at point of need, will then generate hydrogen on demand. Essentially water is being used as a so-called hydrogen storage compound . The only reaction by-product is silica ( sand ) which is easily disposed of or recycled.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL: http://research.chem.ox.ac.uk/john-foord.aspx
Further Information:  
Organisation Website: http://www.ox.ac.uk