EPSRC Reference: |
EP/G026521/1 |
Title: |
Inference for Diffusions and Related Processes |
Principal Investigator: |
Roberts, Professor G O |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Statistics |
Organisation: |
University of Warwick |
Scheme: |
Standard Research |
Starts: |
01 November 2009 |
Ends: |
31 October 2012 |
Value (£): |
311,940
|
EPSRC Research Topic Classifications: |
Mathematical Analysis |
Statistics & Appl. Probability |
|
EPSRC Industrial Sector Classifications: |
No relevance to Underpinning Sectors |
|
|
Related Grants: |
|
Panel History: |
Panel Date | Panel Name | Outcome |
03 Dec 2008
|
Mathematics Prioritisation Panel
|
Announced
|
|
Summary on Grant Application Form |
Traditional methods for diffusion simulation and related Monte Carlo methods have relied on time-discretisation techniques. This approach has two significant disadvantages: it is usually approximate, and time increments typically need to be small to ensure adequacy of the approximation, and thus methods can be computationally expensive.Recent new methodology for this problem has circumvented the need to disretise time by the use of a powerful and flexible new simulation idea known as Retrospective Sampling. This methodology produces exact simulations (to the accuracy constraints of any computer used for the experiment) and has remarkable efficiency properties, so that there appears to be no cost for exactness in this case. However the Exact Algorithm (EA) framework can be applied only for certain classes of diffusion processes (although this class essentially includes all one-dimensional non-explosive diffusions)This project aims to extend the framework above to a very rich and diverse class of stochastic processes, such as jump diffusions, hypo-elliptic diffusions and solutions of stochastic partial differential equations). The approach is to work both with pure simulation methodology and also with related (and more flexible) importance sampling techniques.There are many potential applications of these methods in scientific problems. We will focus on two important areas. The use of diffusion-related models in Systems Biology is expanding rapidly, and we will apply our methodology here. Secondly, we will consider the problem of rare event simulation in molecular dynamics simulation.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.warwick.ac.uk |