EPSRC Reference: |
EP/G048584/1 |
Title: |
Functional Oxide Materials Discovery using Extreme Conditions |
Principal Investigator: |
Attfield, Professor JP |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Sch of Chemistry |
Organisation: |
University of Edinburgh |
Scheme: |
Standard Research |
Starts: |
01 April 2009 |
Ends: |
31 March 2012 |
Value (£): |
63,381
|
EPSRC Research Topic Classifications: |
|
EPSRC Industrial Sector Classifications: |
No relevance to Underpinning Sectors |
|
|
Related Grants: |
|
Panel History: |
Panel Date | Panel Name | Outcome |
27 Nov 2008
|
Strategic Japanese-UK Cooperative Panel (Tech)
|
Announced
|
|
Summary on Grant Application Form |
This proposal will explore the synthesis of electronic and spintronic metal oxides using high pressure and other extreme conditions.The discovery of new materials with outstanding properties motivates much of modern chemistry, physics and materials science. Electronic and magnetic materials e.g. superconductors, magnetoresistors, ferroics and multiferroics are a particular challenge due to the unpredictability of the ground states of correlated electron systems, and their frequent sensitivity to small changes in chemical composition and physical conditions. Despite these difficulties, the exploration of often complex electronic materials has transformed our understanding of many fields in the last two decades, notable inorganic examples being;- High-Tc superconductors - layered copper oxides, fullerides, MgB2, and the new RFeAsO materials.- Magneto-responsive materials - e.g. CMR and multiferroic behaviour in manganese oxide perovskites.- Quantum matter and criticality - ranging from quantum paraelectricity in SrTiO3 to high temperature quantum Hall effects in graphene.Such inorganic materials have large compressibilities (~100-400 GPa), and so high pressures (HP) are needed to change their chemistry, structures and properties significantly. The general aim of our project is to discover new oxides having interesting and useful electronic properties including spintronic activity. High pressure synthesis will be used extensively, but high temperature flux growth and thin film depositions will also be applied. The new materials will be structurally characterized and basic physical properties explored. More detailed characterizations and testing for applications (e.g. in spintronic devices) will be done in collaboration with other UK and Japanese groups.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.ed.ac.uk |