EPSRC logo

Details of Grant 

EPSRC Reference: EP/H001336/1
Title: SAMULET Project 5: Processing Advanced Materials (Resubmission)
Principal Investigator: Ridgway, Professor K
Other Investigators:
Todd, Professor I
Researcher Co-Investigators:
Project Partners:
Department: Advanced Manufacturing Res Centre Boeing
Organisation: University of Sheffield
Scheme: Technology Programme
Starts: 01 June 2009 Ends: 31 May 2012 Value (£): 296,425
EPSRC Research Topic Classifications:
Materials Characterisation Materials Processing
EPSRC Industrial Sector Classifications:
Aerospace, Defence and Marine Manufacturing
Related Grants:
EP/H001387/1 EP/H000976/1 EP/H001379/1 EP/H00131X/1
Panel History:  
Summary on Grant Application Form
To remain competitive the UK aerospace industry needs to identify and implement more efficient and effective methods of manufacture for high value components. This task is made more difficult by the introduction of new materials with high strength and oxidation resistance at high temperature. These high performance alloys while they increase engine performance and efficiency by facilitating higher operating temperatures are made much more difficult to process precisely as a result of these enhanced mechanical properties.The continued development of current and next generation aerospace alloys for engine applications requires that more efficient, suitable and effective methods of manufacture are available for their processing and fabrication. The Materials Science and Engineering underpinning these processes must be well characterised and understood if they are to be controlled and employed effectively and we are to be able to predict with confidence their effects on material properties and behaviour in service. Such advances in the physical understanding and process modelling will enable greater control during manufacture and facilitate greater control through the entire manufacturing process. This, of course, will be highly advantageous for present high-value metallics but will have a particular bearing on the development of novel aerospace materials where there will be a closely coupled development of material and processing capability to enable their rapid introduction to service. This group of projects will provide the basic science required to develop processes that will address this problem. Through the development of forming, and forging processes, metal injection moulding and joining processes advances in quality, productivity and material utilisation will be realised. In addition to identifying optimised process parameters the research programme will simultaneously develop new process modelling tools to create a better understanding of the process and aid process development in the future. New methods of non destructive testing will also be developed to ensure in service component integrity. These technologies taken together are the required step change to enable both the current generation of materials to find continued use and to allow newer less well understood materials to enter service quickly thus maintaining the UKs competitiveness in this industrial sector.The knowledge generated will be made available to the industrial community through the development of new knowledge management tools and techniques.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.shef.ac.uk