EPSRC Reference: |
EP/H019839/1 |
Title: |
Speckle velocimetry for high accuracy and multi-dimensional odometry |
Principal Investigator: |
Tatam, Professor RP |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Sch of Engineering |
Organisation: |
Cranfield University |
Scheme: |
Standard Research |
Starts: |
01 June 2010 |
Ends: |
31 May 2013 |
Value (£): |
281,972
|
EPSRC Research Topic Classifications: |
Control Engineering |
Instrumentation Eng. & Dev. |
Lasers & Optics |
|
|
EPSRC Industrial Sector Classifications: |
Aerospace, Defence and Marine |
Electronics |
|
Related Grants: |
|
Panel History: |
Panel Date | Panel Name | Outcome |
27 Oct 2009
|
Materials, Mechanical, Medical Engineering
|
Announced
|
|
Summary on Grant Application Form |
There is great interest in improving the capabilities of autonomous land vehicles, for a diverse range of applications ranging from inspection/repair in nuclear facilities, pipeline inspections, military surveillance, search and rescue, bomb disposal/mine clearance and space exploration rovers to household vacuum cleaners, lawn mowers and pool cleaners. One area of particular interest concerns the navigation of the vehicle and in particular measuring a vehicle's movements or localisation. Odometry or 'dead reckoning' is commonly used to calculate a vehicle's position, and requires some measure of the distance travelled. Currently, the most common technique for measuring odometry involves counting wheel revolutions using wheel encoders. This is prone to errors and inaccuracies, for example due to wheel slippages, unequal wheel diameters, misalignment of wheels, surface roughness and rounding errors due to the discrete sampling of wheel increments. The research proposed here is the development of an improved method of navigation feedback using non-contact optical sensing combined with digital image processing techniques.The research proposed here is the development of an improved method of navigation feedback using non-contact optical sensing combined with digital image processing techniques. The program will involve the construction and demonstration of a test system, the optimisation of processing algorithms and an assessment of its capabilities. This will be followed by the further development of the concept to provide other navigational information about the vehicle's rotation and the detection of vehicle slippages.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.cranfield.ac.uk |