EPSRC Reference: |
EP/I002936/1 |
Title: |
International Collaboration in Chemistry: Novel Approaches to Molecular Assembly in Polymers for Solar Energy Conversion |
Principal Investigator: |
Heeney, Professor MJ |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Chemistry |
Organisation: |
Imperial College London |
Scheme: |
Standard Research |
Starts: |
04 October 2010 |
Ends: |
31 July 2014 |
Value (£): |
241,168
|
EPSRC Research Topic Classifications: |
Materials Characterisation |
Materials Processing |
Materials Synthesis & Growth |
Solar Technology |
|
EPSRC Industrial Sector Classifications: |
|
Related Grants: |
|
Panel History: |
Panel Date | Panel Name | Outcome |
30 Sep 2010
|
NSF/EPSRC Chemistry Proposals 2009
|
Announced
|
|
Summary on Grant Application Form |
Conversion of light to electrical energy is critical for the future global energy demands with photovolatic cells, fabricated using semiconducting polymers, representing a low-cost solution for energy conversion. This international collaborative study aims to develop new semiconducting polymers that enable photovoltaic cells with controlled morphology and interfacial properties. Novel materials will be developed that are compatible with soft nanoimprint lithographic methods and will be used to form nanostructured all polymer photovoltaic cells. Charge separation in organic semiconductors occurs at nanoscale molecular heterojunctions necessitating the need for control of both molecular structure and interfacial morphological structure. Crosslinkable semiconducting polymers optimized for nanoimprinting will be synthesized and used to form photovoltaics with structurally controlled heterojunctions. These nanostructures will also be used to guide formation of molecular interlayers that improve the charge separation process. Advanced x-ray scattering methods will be used to probe the resulting morphology in nanoimprinted polymers. Optoelectronic characterization of organic photovoltaic cells with controlled interfacial properties will reveal new insight into the charge generation process at organic molecular heterojunctions.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.imperial.ac.uk |