EPSRC logo

Details of Grant 

EPSRC Reference: EP/I004637/1
Title: Search for novel mechanisms to increase the critical temperature of a superconductor
Principal Investigator: garcia garcia, Dr am
Other Investigators:
Researcher Co-Investigators:
Project Partners:
Kyoto University Max Planck Institutes (Grouped) Queen Mary University of London
Rutgers State University of New Jersey University of California Santa Barbara University of Regensburg
University of Tokyo Xiamen University
Department: Physics
Organisation: University of Cambridge
Scheme: Career Acceleration Fellowship
Starts: 31 March 2011 Ends: 12 February 2017 Value (£): 521,823
EPSRC Research Topic Classifications:
Materials Characterisation
EPSRC Industrial Sector Classifications:
No relevance to Underpinning Sectors
Related Grants:
Panel History:
Panel DatePanel NameOutcome
02 Jun 2010 EPSRC Fellowships 2010 Interview Panel C Announced
Summary on Grant Application Form
In this proposal we investigate different aspects of superconductivity with the ultimate goal of finding novel ways - that can be tested experimentally - to increase substantially the critical temperature (Tc) of a superconductor/superfluid. Motivated by recent experimental advances in cold atom, manipulation of nanostructures and theoretical advances in high energy physics, we propose to achieve this goal by studying: 1) finite size effects in different models of high Tc superconductivity both theoretically and experimentally, 2) superconductivity in systems that do not thermalize, 3) superconductivity induced in systems with Efimov states (three particles bound states that occur in situations in which the two body interaction does not lead to bound states). In relation to 1) we aim a description, mostly analytical, of finite size effects in different mean field descriptions of high Tc superconductor. Then, for the models leading to a highest Tc's we plan to carry out a more refined theoretical analysis whose results can be used to describe superconductivity in realistic systems. Finally, in collaboration with experimentalists,we aim to chose the materials and parameters (size, grain shape...) most suitable for experimental studies, show experimentally that the critical temperature can be substantially (>15%) increased and propose technological applications. In relation to 2) we first provide a quantitative description of the stability of the equivalent of a Cooper's trimer in many body systems described by Efimov physics. Then we explore the feasibility of ground states based on a collection of Efimov states by using Monte Carlo techniques. If successful, we aim to describe quantitatively the resulting superconducting state andits stability to thermal fluctuations.In relation to 3) we first address the role of Anderson-Mott localization effects in the route to thermalization in a closed many body system by using exact diagonalization techniques, random matrix theory and the finite size scaling method. Based on these results we put forward a characterization of thermalization in closed many body systems. Finally we investigate superconductivity in systems that do not thermalize. Specifically we aim to identify the non-thermal quasiparticle distribution that enhances Tc the most.A fully theoretical/analytical descritption of these systems is challenging since many of them are strongly interacting. In high energy physics the Anti de Sitter (AdS) - conformal field theory (CFT) correspondence, provides, in certain cases a theoretical framework to tackle these problems. In relation with this problem we explore to what extent this technique provides a really quantitative description of quantum critical points and certain aspects of high temperature superconductivity.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL: http://www.tcm.phy.cam.ac.uk/~amg73/
Further Information:  
Organisation Website: http://www.cam.ac.uk