EPSRC logo

Details of Grant 

EPSRC Reference: EP/I01490X/1
Title: Synthetic materials using metallic and non-metallic nanoparticles at microwave frequencies
Principal Investigator: Vardaxoglou, Professor Y
Other Investigators:
Kusmartsev, Professor F Upadhyaya, Professor HM Zagoskin, Dr A
Researcher Co-Investigators:
Professor WG Whittow
Project Partners:
European Space Agency (International) IMST GmbH
Department: Electronic, Electrical & Systems Enginee
Organisation: Loughborough University
Scheme: Standard Research
Starts: 01 December 2011 Ends: 31 May 2015 Value (£): 495,773
EPSRC Research Topic Classifications:
RF & Microwave Technology
EPSRC Industrial Sector Classifications:
Electronics
Related Grants:
Panel History:
Panel DatePanel NameOutcome
01 Feb 2011 EPSRC ICT Responsive Mode - Feb 2011 Announced
Summary on Grant Application Form
The aim of this research is to fabricate microwave radiating antennas and substrates using nanomaterials. These novel dielectric substrates will facilitate electromagnetic advantages.Antennas are becoming increasingly prevalent in our modern, wireless and digital society; they are crucial for voice and data communication, GPS information and the provision of wireless communication between components of larger integrated systems. Antennas are subject to constant market forces which demand that products and their antennas become cheaper and smaller with improved functionality. With multiple antennas with multiband and MIMO capabilities whilst in very close proximity, for example on a mobile phone, the isolation between the different antennas also requires technological advances for improvement. The establishment of a novel technique to create antennas with improved radiation efficiency would reduce energy consumption.Nanoparticles are typically smaller than one millionth of a metre in at least one dimension and can be combined to form nanomaterials. Yet because the size of nanoparticles is so small and their resultant surface area-to-volume ratio so extremely large, nanomaterials possess a range of very useful and exciting properties. These include proportionately increased electrical conductivity, strength, heat and scratch resistance. Note, we will not be using nano-powders so the health risks will be minimal - and we will take all necessary steps to further minimise them.The use of nanomaterials will fundamentally allow increased versatility and improve functionality by design innovations. This area of research is highly novel as the use of nanomaterials as proposed here has not previously been reported at the application-rich microwave frequencies (wavelength ~ 30cm >> 1 micron). Using such nanomaterials for microwave antennas would allow manufacturing benefits as the antenna, the substrate and RF circuitry can be constructed together and integrated into one process. Currently, antennas designs are limited to certain specific fixed substrate properties. By constructing the substrate from non-metallic nanomaterials, advantageous, novel and heterogeneous substrates, with low losses and desirable electric and magnetic properties, can be produced, which can then be tailored for specific applications. Creating antennas from nanomaterials enables highly conductive and thinner than conventional layers.Intensive simulations using high performance computers will enhance Loughborough University's (LU) recent pilot study of how these novel antennas can behave. When these preparatory stages have been completed, prototype samples and antennas will be fabricated. Initially, geometrically simple antenna designs such as dipoles and patches will be used, enabling extrapolation to more complex antenna geometries later in the project. Once these are created their characteristics will be measured using LU's anechoic chamber, and compared with the simulation results.LU is ideally placed to research this exciting new area. The Communications Group has extensive expertise of simulating, design and measuring antennas and metamaterials. We have assembled an extremely strong multi-disciplinary team which has over 700 journal publications and more than 100 patents and book chapters. The Centre for Renewable Energy Systems Technology (CREST) has the capabilities to produce and characterise our specially made nanostructures. We also have close contacts with Patras University in Greece, which can fabricate nanostructures by an alternative (but viable) method using polymers.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.lboro.ac.uk