EPSRC logo

Details of Grant 

EPSRC Reference: EP/J004383/1
Title: Higher Order Problems in Geometric Analysis
Principal Investigator: Moser, Professor R
Other Investigators:
Schwetlick, Dr H
Researcher Co-Investigators:
Project Partners:
Department: Mathematical Sciences
Organisation: University of Bath
Scheme: Standard Research
Starts: 27 January 2012 Ends: 26 July 2012 Value (£): 17,296
EPSRC Research Topic Classifications:
Mathematical Analysis
EPSRC Industrial Sector Classifications:
No relevance to Underpinning Sectors
Related Grants:
Panel History:  
Summary on Grant Application Form
Many problems in modern geometry are formulated in terms of nonlinear partial differential equations (PDEs), the analysis of which requires a high degree of expertise in the theory of PDEs as well as geometric insight. Since geometric principles or geometric constraints are often used in theoretical physics, engineering, or other sciences, the combination of analytic techniques with geometric ideas is also of tremendous interest outside of mathematics. Geometric analysis has thus always been interlinked with the theory of differential equations and with mathematical physics as well as geometry. But recently, interest in geometric PDEs has further increased through the work of Perelman, who solved a long-standing problem by proving the famous Poincare conjecture with a PDE-based approach, thereby increasing our understanding of three-dimensional spaces considerably.

The bulk of existing work in the area is concerned with equations of order 2, but there is increasing interest in higher order problems. Typically these require completely new methods, because much of the second order theory relies heavily on the maximum principle, which is not available for higher order equations. We propose to hold a workshop on `Higher Order Problems in Geometric Analysis', bringing together some of the leading experts on problems of this sort. We envisage a meeting that not only allows an exchange of the latest ideas within the geometric analysis community, but also generates interactions with geometers, applied mathematicians, or engineers. Furthermore, PhD students and other young researchers should have the opportunity to learn about questions, ideas, and techniques that they may rarely encounter otherwise.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.bath.ac.uk