EPSRC logo

Details of Grant 

EPSRC Reference: EP/J00801X/1
Title: Plasticity in NEUral Memristive Architectures
Principal Investigator: Prodromakis, Professor T
Other Investigators:
Researcher Co-Investigators:
Project Partners:
Department: Electrical and Electronic Engineering
Organisation: Imperial College London
Scheme: Standard Research
Starts: 05 September 2011 Ends: 14 April 2013 Value (£): 482,747
EPSRC Research Topic Classifications:
Bioelectronic Devices Electronic Devices & Subsys.
EPSRC Industrial Sector Classifications:
Electronics
Related Grants:
Panel History:  
Summary on Grant Application Form
During the past two decades, philosophers, psychologists, cognitive scientists, clinicians and neuroscientists strived to provide authoritative definitions of consciousness within a neurobiological framework. Engineers have more recently joined this quest by developing neuromorphic VLSI circuits for emulating biological functions. Yet, to date artificial systems have not been able to faithfully recreate natural attributes such as true processing locality (memory and computation) and complexity (10^10 synapses per cm2), preventing the achievement of a long-term goal: the creation of autonomous cognitive systems.

This project aspires to develop experimental platforms capable of perceiving, learning and adapting to stimuli by leveraging on the latest developments of five leading European institutions in neuroscience, nanotechnology, modeling and circuit design. The non-linear dynamics as well as the plasticity of the newly discovered memristor are shown to support Spike-based- and Spike-Timing-Dependent-Plasticity (STDP), making this extremely compact device an excellent candidate for realizing large-scale self-adaptive circuits; a step towards "autonomous cognitive systems". The intrinsic properties of real neurons and synapses as well as their organization in forming neural circuits will be exploited for optimising CMOS-based neurons, memristive grids and the integration of the two into realtime biophysically realistic neuromorphic systems. Finally, the platforms would be tested with conventional as well as abstract methods to evaluate the technology and its autonomous capacity.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.imperial.ac.uk