EPSRC logo

Details of Grant 

EPSRC Reference: EP/J011797/1
Title: Electrical and picosecond optical control of plasmonic nanoantenna hybrid devices
Principal Investigator: Muskens, Professor O
Other Investigators:
Chong, Professor HMH de Groot, Professor C
Researcher Co-Investigators:
Project Partners:
Department: Sch of Physics and Astronomy
Organisation: University of Southampton
Scheme: Standard Research
Starts: 01 June 2012 Ends: 31 May 2015 Value (£): 484,951
EPSRC Research Topic Classifications:
Optoelect. Devices & Circuits RF & Microwave Technology
EPSRC Industrial Sector Classifications:
No relevance to Underpinning Sectors
Related Grants:
EP/J010758/1
Panel History:
Panel DatePanel NameOutcome
07 Dec 2011 EPSRC ICT Responsive Mode - Dec 2011 Announced
Summary on Grant Application Form
Miniaturization of optical components for on-chip integration of electronic and photonic functionalities is one of the new frontiers with the promise of enabling a next generation of integrated optoelectronic circuits. A particularly fascinating prospect is the achievement of an optical analogue of the electronic transistor, which forms the building block of our computers. Our approach involves a nanoscale version of a radiowave antenna, the plasmonic nanoantenna. Plasmonic antennas are designed to overcome the diffraction limit of light and to focus light into a nanometer-sized antenna 'feed' gap.

In our first studies supported by EPSRC we have proposed a variety of devices exploiting hybrid interactions of a nanoantenna with an active substrate. Here, we aim to launch a full-scale investigation of such hybrid antenna devices including various geometries and metal oxide substrates, where the plasmonic antenna will be exploited as a nanoscale sensitizer for the active substrate. Integration of a nanoantenna switches with a nanoelectronic transistor will yield a new class of optoelectronic devices: the nanoantenna MOSFET.

The proposed optically and electrically controlled nanoantenna devices are of enormous interest as a bridge for on-chip control of electrical and optical information. In addition, ultrafast active control of local fields and antenna radiation patterns will enable new applications in nonlinear optics, Raman sensors, and optical quantum information technology.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.soton.ac.uk