EPSRC Reference: |
EP/J01768X/1 |
Title: |
Gettering of impurities in silicon: delivering quantitative understanding to improve photovoltaics |
Principal Investigator: |
Murphy, Professor JD |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Materials |
Organisation: |
University of Oxford |
Scheme: |
First Grant - Revised 2009 |
Starts: |
03 September 2012 |
Ends: |
31 January 2013 |
Value (£): |
89,533
|
EPSRC Research Topic Classifications: |
Materials Characterisation |
Materials Synthesis & Growth |
|
EPSRC Industrial Sector Classifications: |
No relevance to Underpinning Sectors |
|
|
Related Grants: |
|
Panel History: |
Panel Date | Panel Name | Outcome |
09 Feb 2012
|
EPSRC Physical Sciences Materials - February
|
Announced
|
|
Summary on Grant Application Form |
Photovoltaics have the potential to supply all the world's energy needs. The market for photovoltaics is dominated by cells made from crystalline silicon, which account for more than 80% of today's production. Whilst other technologies are being researched, silicon's abundance, chemical stability, density, band gap and non-toxic nature mean that is certain to play a leading role in at least the medium term. More than half of bulk silicon solar cells are fabricated from multicrystalline silicon (mc-Si) wafers. Although mc-Si photovoltaics have lower efficiencies than their single-crystal counterparts, their substantially lower production costs means the technologies have equal commercial viability at present. Mc-Si is produced by casting, often using a low grade feedstock, and is consequently packed with extended defects (dislocations, grain boundaries and precipitates) and transition metal impurity point defects. Recombination of photogenerated charge carriers at such defects is a major reason for the reduced efficiency of mc-Si cells. Gettering processes are routinely used either to redistribute the defects or remove them from the material. However, such processes are not completely effective. One of the major reasons for this is that the interaction between defects prevents them being gettered. This project aims to further the fundamental understanding of defect interactions in mc-Si. The thermodynamics of interactions between transition metals (particularly iron) and extended defects (particularly dislocations and oxide precipitates) will be studied experimentally. Passivation of key extended defects will also be investigated. The fundamental knowledge obtained should allow the development of new or modified gettering processes with the ultimate aim of facilitating the use of dirtier (hence cheaper) feedstocks for silicon photovoltaics.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.ox.ac.uk |