EPSRC logo

Details of Grant 

EPSRC Reference: EP/K00137X/1
Title: Breaking the single-atom limit in atomic manipulation
Principal Investigator: Sloan, Dr P A
Other Investigators:
Researcher Co-Investigators:
Project Partners:
Department: Physics
Organisation: University of Bath
Scheme: First Grant - Revised 2009
Starts: 01 November 2012 Ends: 31 October 2014 Value (£): 107,502
EPSRC Research Topic Classifications:
Chemical Structure Surfaces & Interfaces
EPSRC Industrial Sector Classifications:
No relevance to Underpinning Sectors
Related Grants:
Panel History:
Panel DatePanel NameOutcome
25 Jul 2012 EPSRC Physical Sciences Chemistry - July 2012 Announced
Summary on Grant Application Form
The ultimate building blocks of matter are atoms and molecules. If we can control these we can truly build from the bottom up, for example, a computer made of atomic-scale components that would fit into the palm of your hand yet be more powerful than today's supercomputers. In 1986 the Nobel prize was won for the invention of a microscope that can image individual atoms and molecules, the scanning tunnelling microscope (STM). But more than that, in 1989 that microscope was used to assemble a man-made structure atom-by-atom with atomic precision; a 35 Xenon atom advert for IBM. Since then many great strides have been taken in the quest for ultimate atomic control, including breaking and making individual chemical bonds, constructing a single molecule transistor and even constructing logic gates out of carbon-monoxide molecules. So why, in the intervening 22 years, has such atomic scale engineering not become common place in modern technology? There are of course many technical challenges to working on this atomic level, for example, at the atomic scale everything sticks to everything and even at room temperature your IBM advert will boil off into space. But perhaps the most challenging limitation is not due to a fundamental problem with the quantum physics that governs atoms and molecules, but is instead the construction process itself: all these exquisite structures were built one atom at a time. That is quite a manufacturing bottleneck!

This experimental proposal aims to explore a new way of controlling multiple atoms and molecules with the scanning tunnelling microscope - nonlocal atomic manipulation. Instead of manipulating only the atom that is directly in the microscope's sights, leading to the one-atom-at-a-time limit, here we'll spread the effect of the microscope (specifically its injected electric current) across a surface over distances of 10's of manometers. This nonlocal process allows thousands of individual molecules to be manipulated simultaneously. Many critical questions remain to be answered if this new mode of manipulation is to have any promise of constructing extended structures with atomic precision: what roles do the molecules and the surface play in the nonlocal process? Is there a difference to what happens for a molecule directly under the microscope (as in conventional atomic manipulation) and a molecule some distance remote? How is the electrical current transported from microscope to distant target molecules? And how general a process is this? By answering these questions we'll be closer to transforming atomic manipulation from an elegant laboratory technique to a manufacturing tool for creating (relatively!) large scale but atomically precise structures.

Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.bath.ac.uk