EPSRC Reference: |
EP/K003976/1 |
Title: |
Multi-scale Exploration of MultiPhase Physics In FlowS (MEMPHIS) |
Principal Investigator: |
Matar, Professor OK |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Chemical Engineering |
Organisation: |
Imperial College London |
Scheme: |
Programme Grants |
Starts: |
01 September 2012 |
Ends: |
31 December 2017 |
Value (£): |
4,968,854
|
EPSRC Research Topic Classifications: |
|
EPSRC Industrial Sector Classifications: |
|
Related Grants: |
|
Panel History: |
|
Summary on Grant Application Form |
This project is an opportunity to harness the synergy between world-leading scientists from four prestigious institutions to create the next generation modelling tools for complex multiphase flows. These flows are central to micro-fluidics, virtually every processing and manufacturing technology, oil-and-gas and nuclear applications, and biomedical applications such as lithotripsy and laser-surgery cavitation. The ability to predict the behaviour of multiphase flows reliably will address a major challenge of tremendous economic, scientific, and societal benefit to the UK. The Programme will achieve this goal by developing a single modelling framework that establishes, for the first time, a transparent linkage between input (models and/or data) and prediction; this will allow systematic error-source identification, and, therefore, directed, optimal, model-driven experimentation, to maximise prediction accuracy. The framework will also feature optimal selection of massively-parallelisable numerical methods, capable of running efficiently on 10^5-10^6 core supercomputers, optimally-adaptive, three-dimensional resolution, and the most sophisticated multi-scale physical models. This framework will offer unprecedented resolution of multi-scale, multiphase phenomena, minimising the reliance on correlations and empiricism. The investigators' synergy, and their long-standing industrial collaborations, will ensure that this Programme will result in a paradigm-shift in multiphase flow research worldwide. We will demonstrate our capabilities in two areas of strategic importance to the UK: by providing insights into novel manufacturing processes, and reliable prediction of multiphase flow regime transitions in the oil-and-gas industry. Our framework will be sufficiently general to address a number of other industrial and environmental global challenges, which we detail herein.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.imperial.ac.uk |