EPSRC logo

Details of Grant 

EPSRC Reference: EP/K01658X/1
Title: Graphene three-dimensional networks
Principal Investigator: Saiz Gutierrez, Professor E
Other Investigators:
Li, Professor K Shaffer, Professor M Mattevi, Dr C
Reece, Professor M Peijs, Professor T Bismarck, Professor A
Researcher Co-Investigators:
Project Partners:
DSM Graphenea S.A. Kennametal (Global)
LiqTech International Morgan Crucible Repsol-Sinopec
Sabic Europe Thomas Swan
Department: Materials
Organisation: Imperial College London
Scheme: Standard Research
Starts: 01 February 2013 Ends: 31 January 2017 Value (£): 1,914,243
EPSRC Research Topic Classifications:
Manufact. Enterprise Ops& Mgmt
EPSRC Industrial Sector Classifications:
Electronics Energy
Related Grants:
Panel History:
Panel DatePanel NameOutcome
15 Nov 2012 Graphene Engineering Interview Announced
31 Oct 2012 Graphene Engineering Sift Deferred
Summary on Grant Application Form
Graphene and its derivatives exhibit unprecedented combinations of properties: tuneable electrical and optical response, high intrinsic mechanical response, chemical versatility, tuneable permeability, extremely high surface area >3000m2/g... The incorporation of graphene in practical devices will open new technological opportunities in a wide number of technologies such as catalysis, supercapacitors, membranes and multifunctional polymer and ceramic composites. In order to combine optimum functional and mechanical properties, these devices will often have complex structures with characteristic features at multiple lengths scales from the nano to the macro level. For example, foams with open micro-scale porosity to allow gas access and nano-scale pores to enhance surface area, membranes that will combine ceramic supports with graphene layers of controlled permeability or multilayer structures with layer thickness ranging from micro to nanolevels. The scientific and engineering challenge is the development of manufacturing approaches to build these devices in a reliable and cost-effective manner.

Wet-processing techniques based on the use of liquid particulate suspensions, or solutions have made very significant advances in the last years. They are reliable, robust, and efficient. Now they are using to build materials with increasing degrees of precision, down to nano-levels and are having an increasing impact in a wide range of technologies. With the advent of solution processable graphene, we strongly believe that there is an often overlooked opportunity to develop wet processing technologies to build graphene-based devices. However, the development of these techniques will depend on two key issues: establishing a reliable path for the large scale synthesis of powders with controlled size and chemistry and understanding the basic physicochemical parameters that determine the response of graphene suspensions.

This project puts together a multidiscilplinary team with the objective to develop new wet-processing manufacturing approaches to build graphene-based 3D structures for selected technological applications. The project will cover basic scientific and engineering aspects such as powder synthesis and the basic analysis of the physicochemical parameters that control the response of colloidal suspensions of two dimensional materials. We plan to use a coordinated approach that by simultaneously developing a suite of processing approaches (from emulsification, 3D printing, layer-by-layer deposition, aerogels...) will be able to define and address the many common scientific and engineering issues and generate a synergistic effect that will push technological development. An essential part of our approach is the emphasis on specific technological applications (supercapacitors, membranes, electrochemical devices...). This emphasis will serve to focus the development of our manufacturing approaches towards specific goals, providing clear directions for structural manipulation and enhancing tremendously the technological impact of this project. By systematically analyzing the performance of our structures in these applications we will also define the key principles that should guide the design of graphene-based devices in order to optimize their functional and mechanical response.

This project will break new ground and uncover new scientific principles and technologies that will have a lasting impact not only on the implementation of graphene but also for a whole new family of emergent two dimensional materials whose unique properties are poised to change the way we design and build devices for a wide range of fields in the upcoming years.

Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.imperial.ac.uk