EPSRC logo

Details of Grant 

EPSRC Reference: EP/L000237/1
Title: Plasma Physics HEC Consortia
Principal Investigator: Arber, Professor T
Other Investigators:
Dudson, Dr BD Norreys, Professor PA Wilson, Professor H
Bell, Professor AR Evans, Professor RG McMillan, Dr BF
Ridgers, Dr CP Chittenden, Professor J Ashworth, Dr M
Roach, Dr CM McKenna, Professor P
Researcher Co-Investigators:
Project Partners:
Department: Physics
Organisation: University of Warwick
Scheme: Standard Research - NR1
Starts: 29 May 2013 Ends: 28 May 2018 Value (£): 279,240
EPSRC Research Topic Classifications:
Aerodynamics Fusion
Plasmas - Laser & Fusion Plasmas - Technological
EPSRC Industrial Sector Classifications:
Energy
Related Grants:
Panel History:
Panel DatePanel NameOutcome
04 Feb 2013 HEC Consortia Announced
04 Feb 2013 HEC Consortia Announced
Summary on Grant Application Form
Plasma physics is the study of the properties of fully ionised gases or dense matter that exhibits similar collective behaviour. The processes, which need to be investigated, therefore cover kinetic theory of matter far from its equilibrium state, fluid dynamics of magnetised and conductive plasmas and the interaction of these processes across a huge range of time and length scales, often in complex geometries. Such problems are rarely tractable analytically and thus much of plasma physics resorts to High End Computing (HEC) to perform massive simulations.

This planned HEC Consortium will cover all aspects of computational plasma physics. This includes modelling for magnetic confinement fusion (MCF) devices to optimize reactor performance, simulations to optimize laser-particle accelerator sources, novel approaches to high-intensity laser plasma experiments and laser-driven fusion. In all these areas High End Computing (HEC) resources are needed for simulations which are essential to either guiding experiments and research programmes (including a reliable predictive capability for the performance of future plasma facilities) or interpreting the complex diagnostic sets from coupled multi-scale, non-linear and often relativistic processes.

To help maintain the UK's leading role in fusion reactor design and basic plasma physics the HEC Consortium requires a block allocation of UK National level computing resource. This will ease the access to such facilities and allow the UK to collectively plan computational programmes, which will require many years to complete, in the certainty that the computing resources will be available. Over the five-year duration of this HEC Consortium grant HEC architectures are likely to change and optimising codes for current and future machines is therefore essential. In addition new physics packages must be developed and implemented to keep the UK at the cutting edge of this research. The Consortium therefore also requires funding for software development to exploit the computing resources and keep codes world-leading.

The proposed HEC Consortium will therefore conduct simulations in support of the UK fusion programme; software development for novel physical processes and maintain the scientific impact of plasma and laser physics.

Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.warwick.ac.uk