EPSRC Reference: |
EP/L000253/1 |
Title: |
The UK High-End Computing Consortium for Biomolecular Simulation |
Principal Investigator: |
Mulholland, Professor AJ |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Chemistry |
Organisation: |
University of Bristol |
Scheme: |
Standard Research - NR1 |
Starts: |
01 November 2013 |
Ends: |
31 January 2019 |
Value (£): |
288,481
|
EPSRC Research Topic Classifications: |
Catalysis & Applied Catalysis |
Catalysis & enzymology |
Chemical Biology |
High Performance Computing |
Protein chemistry |
Structural biology |
|
EPSRC Industrial Sector Classifications: |
No relevance to Underpinning Sectors |
|
|
Related Grants: |
|
Panel History: |
Panel Date | Panel Name | Outcome |
04 Feb 2013
|
HEC Consortia
|
Announced
|
04 Feb 2013
|
HEC Consortia
|
Announced
|
|
Summary on Grant Application Form |
Simulations using powerful computers can show how biological molecules 'work' in atomic detail. For example, molecular simulations can show drugs bind to their biological targets, how enzymes catalyse reactions, and how proteins fold into their functional forms. Biomolecular simulation is a vibrant and growing area, making increasingly significant contributions to biology. It is an area of growing international importance. Simulations of biological molecules complement experiments in building a molecular-level understanding of biology: they can test hypotheses and interpret and analyse experimental data in terms of interactions at the atomic level. A wide variety of simulation techniques have been developed, applicable to a range of different problems in biomolecular science. Biomolecular simulations have already shown their worth in helping to analyse how enzymes catalyse biochemical reactions, and how proteins adopt their functional structures e.g. within cell membranes. They contribute to the design of drugs and catalysts, and in understanding the molecular basis of disease. Simulations have played a key role in developing the conceptual framework now at the heart of biomolecular science, that is, the understanding that the way that biological molecules move and flex - their dynamics - is central to their function. Developing methods from chemical physics and computational science will open exciting new opportunities in biomolecular science, including in drug development and biotechnology. Much biomolecular simulation demands high end computing (HEC) resources: e.g. large-scale simulations of biological machines such as the ribosome, proton pumps and motors, membrane receptor complexes and even whole viruses. A particular challenge is the integration of simulations across length and timescales: different types of simulation method are required for different types of problems).
Biomolecular Simulations are contributing increasingly to areas such as biotechnology, drug design, biocatalysis and biomedicine. The UK has a strong community in this field, recognized by the recent (2011) establishment by EPSRC of CCP-BioSim (ccpbiosim.ac.uk), the UK Collaborative Computational Project for Biomolecular Simulation at the Life Sciences Interface (and the subsequent award of 'widening participation' funds in 2012). We believe there is a clear, growing and demonstrable need for high-end computing in this field, and propose a new HEC Consortium in biomolecular simulation. Working with CCP-BioSim, this Consortium will help bring HEC to a wider community, including non-traditional users and experimental bioscientists, and engage physical and computer scientists in biological applications.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.bris.ac.uk |