EPSRC Reference: |
EP/L016613/1 |
Title: |
EPSRC CENTRE FOR DOCTORAL TRAINING IN THE MATHEMATICS OF PLANET EARTH AT IMPERIAL COLLEGE LONDON AND THE UNIVERSITY OF READING |
Principal Investigator: |
Crisan, Professor D |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Mathematics |
Organisation: |
Imperial College London |
Scheme: |
Centre for Doctoral Training |
Starts: |
01 April 2014 |
Ends: |
30 September 2022 |
Value (£): |
5,476,371
|
EPSRC Research Topic Classifications: |
Continuum Mechanics |
Non-linear Systems Mathematics |
Numerical Analysis |
Statistics & Appl. Probability |
|
EPSRC Industrial Sector Classifications: |
|
Related Grants: |
|
Panel History: |
Panel Date | Panel Name | Outcome |
23 Oct 2013
|
EPSRC CDT 2013 Interviews Panel E
|
Announced
|
|
Summary on Grant Application Form |
Our environment has a major influence on all aspects of human endeavour ranging from the mundane, such as deciding whether to cycle or take the bus to work, to the exceptional, such as coping with the ever more damaging effects of extreme natural phenomena (tropical storms, inundations, tsunamis, droughts, etc.). In addition, climate change is one of the most pressing challenges that confront humanity today.
What was once viewed as something that might happen in the future is now part of daily life. Because most impacts of climate variability and change occur through extreme weather events and spells, the two issues of weather and climate are closely interlinked. We rely on science and technology to provide the means of managing the complex intricacies of the environment and to meet the pressing challenges of climate change. Mathematics plays a central role in this massive undertaking as it provides the fundamental basis of the theory and modelling of weather, oceans and climate. However the nature of the mathematical challenges is changing and the need for scientists trained in risk and uncertainty is growing rapidly. Meeting these needs can only be achieved by training an entirely new generation of scientists to meet the multi-faceted challenges, with all their complex inter-dependencies. These scientists will need extraordinarily broad training in several scientific areas, including geophysical fluid dynamics, scientific computing, statistics, data assimilation and partial differential equations. Above all, they must understand the mathematics that unifies them.
The alignment of Imperial College's Mathematics Department and Grantham Institute for Climate Change with Reading University's Departments of Mathematics and Statistics and of Meteorology has put these two institutions into a unique position to offer a CDT focussing on the priority area: Mathematical Sciences for Weather, Ocean and Climate, as a 50-50 joint venture. We propose to bring together, as academic supervisors and stakeholders in the centre, more than 60 world-leading researchers with expertise in a wide spectrum of areas that comprise the mathematical foundation as well as the frontier application areas.
The central aim of the proposal is to build a strong cohort of young scientists whose backgrounds will span the breadth of the mathematical sciences from statistics, PDEs and dynamical systems, scientific computing, data analysis, and stochastic processes including relevant application areas from weather, oceans and climate. These young scientists must also acquire problem-specific knowledge through an array of elective courses and supervisory expertise offered by the two institutions and the external partners. A core component of the cohort training will be a ten-week programme hosted by the Met Office in Exeter which will include lectures given by world-leading scientists and research internships with Met Office staff, tackling real-world projects by teamwork.
Key partners to the proposed CDT include major international players in research and operational forecasting for weather, oceans, and climate, including the UK Met Office, the European Centre for Medium Range Weather Forecasts, the German DWD, the National Centre for Atmospheric Science and the National Centre for Earth Observation. The EPSRC contribution to the Centre will be heavily leveraged with institutional and external partners, whose financial commitments are estimated to cover 65% of the total costs.
The proposal is also in alignment with the global initiative Mathematics of the Planet Earth 2013 which involves scientific societies, universities, institutes and organizations all over the world aiming to learn more about the challenges faced by our planet and to increase the research effort on these issues.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.imperial.ac.uk |