EPSRC Reference: |
EP/L02084X/1 |
Title: |
Developing a Bespoke Incremental Sheet Forming Machine for Cranioplasty |
Principal Investigator: |
Ou, Dr H |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Faculty of Engineering |
Organisation: |
University of Nottingham |
Scheme: |
Standard Research |
Starts: |
06 October 2014 |
Ends: |
30 September 2018 |
Value (£): |
299,705
|
EPSRC Research Topic Classifications: |
Manufacturing Machine & Plant |
Med.Instrument.Device& Equip. |
|
EPSRC Industrial Sector Classifications: |
|
Related Grants: |
|
Panel History: |
Panel Date | Panel Name | Outcome |
11 Feb 2014
|
Manufacturing in Healthcare
|
Announced
|
|
Summary on Grant Application Form |
Cranioplasty is a surgical procedure for the repair of deformity of a human skull due to brain tumour, stroke or traumatic injuries. Among all available materials, titanium continues to be a main stream material used in cranioplasty surgeries because of its excellent biocompatibility, resistance to infection, excellent material properties and lightweight. However, in spite of the popular use of titanium in cranial reconstruction, there is a wide variety of methods including casting, manual shaping and rubber press forming commonly used in cranial plate manufacture. Even with the assistance of advanced CAD/CAM (computer-aided design and manufacture) and computed tomographic (CT) and magnetic resonance imaging (MRI) technologies, currently the process for manufacturing customised cranial plates by conventional methods normally takes up to two weeks to completion mainly due to the time required for the manufacture of dies and tools. Recent advances in 3D printing or additive manufacturing based techniques make it possible to complete the 3D printing of a cranial or a maxillofacial prosthetic part within several hours. However, there are still a number of impediments including material property and cost issues to be overcome before its wide clinical applications.
This project proposes a novel alternative solution for an even faster and more cost effective method for the manufacture of personalised cranial plates by using the incremental sheet forming (ISF) technique. Our recent work has shown that a typically large size cranial plate can be made satisfactorily by using the ISF process in 7~8 minutes rather than hours or days. This outcome has considerable implications in potential technological advances and economic benefits as well as improvement to quality of life. In this project we aim to develop the new ISF based cranioplasty manufacturing technique, to design and build a bespoke desktop ISF machine for cranial reconstruction with full CT/MRI and CAD/CAM software integration and ISF process automation. By using the developed bespoke ISF machine, we will conduct a series of ISF benchmark testing and cranial reconstruction pre-clinical trials of 3 demonstration case studies using the developed bespoke ISF machine. The project will demonstrate its technical viability, economic benefit and potential improvement of quality of life. By the end of the project we aim to achieve up to 95% manufacturing lead time reduction with associated cost benefits as compared to the conventional methods. We also plan to show that the bespoke ISF machine can be used as a new and viable medical device for cranial manufacturing and there is a niche market place for speedy commercial exploitation.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.nottingham.ac.uk |