EPSRC Reference: |
EP/L022559/1 |
Title: |
Flexible Single-Optical-Fibre Endoscope |
Principal Investigator: |
Su, Dr L |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Electrical Engineering and Electronics |
Organisation: |
University of Liverpool |
Scheme: |
First Grant - Revised 2009 |
Starts: |
31 August 2014 |
Ends: |
31 August 2015 |
Value (£): |
100,504
|
EPSRC Research Topic Classifications: |
Digital Signal Processing |
Image & Vision Computing |
Medical Imaging |
Optical Devices & Subsystems |
|
EPSRC Industrial Sector Classifications: |
|
Related Grants: |
|
Panel History: |
Panel Date | Panel Name | Outcome |
09 Apr 2014
|
EPSRC ICT Responsive Mode - Apr 2014
|
Announced
|
04 Feb 2014
|
EPSRC ICT Responsive Mode - Feb 2014
|
Deferred
|
|
Summary on Grant Application Form |
Recently, researchers at Massachusetts Institute of Technology and Korean University demonstrated a single multimode-optical-fibre (MMF) imaging endoscope. Compared with conventional fibre-bundle based endoscopes, this device is ultra-slim, high-resolution, wide-field, lensless, low cost and disposable. The main drawback of such devices is that they cannot be used as flexible endoscopes due to image blurring caused by fibre-shape variation. However, flexible endoscopes are viewed as most desirable and are widely used in modern healthcare. In order to overcome this problem, this research aims to develop the world's first flexible single-fibre endoscope system by using a novel speckle monitoring technique. The monitoring module will consist of a calibration beam and associated optics to monitor the real-time changes in mode coupling induced by fibre movement and bending. The monitoring results will be used to predict MMF imaging transmission matrix for original image restoration. At the end of the project, a prototype device together with real-time software and algorithms will be developed for potential clinical trials and translational research. The project is highly interdisciplinary: it brings together expertise in the areas of optics, instrumentation, imaging, signal processing and surgery. The outcome of the proposed research has the potential to put the UK at the forefront of a crucial emerging area of new medical devices for modern endoscopy, which is likely to have a huge impact not only on research and patient well-being, but also on the UK and global economy.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.liv.ac.uk |