EPSRC Reference: |
EP/M002403/1 |
Title: |
Engineering Fellowships for Growth: Development of SimCells as building blocks for synthetic biology |
Principal Investigator: |
Huang, Dr W |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Engineering Science |
Organisation: |
University of Oxford |
Scheme: |
EPSRC Fellowship |
Starts: |
01 November 2014 |
Ends: |
31 October 2019 |
Value (£): |
843,225
|
EPSRC Research Topic Classifications: |
Fuel Cell Technologies |
Synthetic biology |
|
EPSRC Industrial Sector Classifications: |
|
Related Grants: |
|
Panel History: |
Panel Date | Panel Name | Outcome |
12 Mar 2014
|
Engineering Fellowships for Growth - SynBio
|
Announced
|
|
Summary on Grant Application Form |
The vision of this Fellowship is to establish an unprecedented new bioengineering platform for synthetic biology - the SimCell (Simple and Simulated Cell) that performs advanced bioengineering functions in an easy-to-use, safe-to-handle, and reliable-to-build manner. The aim of this fellowship is to develop SimCells as programmable 'bio-robots' and establish the foundation for standardised engineering applications of SimCells. SimCells have the potential to open up a new frontier, enabling the development of new and smart materials for bioprocessing and manufacturing, bioenergy, healthcare, agriculture and environmental monitoring and protection. Unlike a living cell, a SimCell is a chromosome-free and simplified cellular bio-robot; its 'hardware' is the optimised 'shell' of a cell which enables specific cellular properties; and its 'software' is a piece of DNA which delivers the defined functions. The optimised shell and simple DNA in SimCells enables them faithfully delivering most of their energy and resources to a specific function without interference of unwanted pathways and networks in a natural cell. A SimCell is a non-dividing, biochemically active, designable and simplified agent, which can be continuously produced by engineered parent cells, but which cannot reproduce itself, making it more acceptable to public opinion than living genetically modified organisms (GMOs).
The Fellowship is truly revolutionary, transforming current synthetic biology based on living cells or cell-free system by providing an intermediate building block between them and taking advantages of both. It directly addresses three of five great challenges of synthetic biology by establishing novel SimCells as predictable, simple, safe and programmable bio-robots. The application of SimCells would lead to address one of challenges in 'the third industrial revolution' - bioenergy.
To demonstrate SimCells as miniature factories with high energy transfer efficiency, a bio-transformation system will be designed to produce biofuels (such as ethanol and alkanes) from H2O and CO2, mediated by SimCells and powered by electrons and sunlight. This will be built on the established synthetic pathways developed by WH's previous research and patents. The outcomes of this Fellowship will set a bioenergy benchmark to which other long-term projects will aspire, and will also create the infrastructure for a wide range of applications.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.ox.ac.uk |