EPSRC logo

Details of Grant 

EPSRC Reference: EP/M020282/1
Title: A feasibility study for establishing a design tool for floating tidal energy system
Principal Investigator: XIAO, Dr Q
Other Investigators:
Researcher Co-Investigators:
Project Partners:
Harbin Engineering University Ocean University of China
Department: Naval Architecture, Ocean & Marine Eng
Organisation: University of Strathclyde
Scheme: Standard Research - NR1
Starts: 30 October 2014 Ends: 31 October 2015 Value (£): 115,854
EPSRC Research Topic Classifications:
Energy - Marine & Hydropower
EPSRC Industrial Sector Classifications:
Energy
Related Grants:
Panel History:  
Summary on Grant Application Form
In the past decade, tidal stream energy converters have become a major focus for renewable energy R&D with a number of turbine farms now in its planning and development phase. The majority of existing designs for tidal energy devices utilize sea-bed mounted turbine energy converters. These underwater devices however present many challenges related to economic and technical viability in terms of their installations and maintenances cost.

In recent years, a floating type tidal energy device is being developed. The installation of such a device comprises of single or multiple turbines mounted on a floating platform anchored to the sea-bed with mooring lines.

Research and industry teams in China and UK have presented multiple demonstrations both on a model scale and a full scale floating tidal energy converter. All of the results add credibility to their technical feasibility and cost effective nature as compared to fixed turbines.

Despite the advantages of floating tidal current turbines (FTCT) over their fixed counterparts, the existing design guidance is not deemed to be ready for the commercial market. The key challenges include guaranteeing the safety of supporting platform and floating mooring lines, the survivability of large scale rotor under extreme sea conditions, the accurate assessment for the proper site selection and the reliable evaluation of environmental impacts. Existing industry design tools rely very much on the simplified models or individual component design rules which negatively impact the energy extraction process/amount/supply.

The proposed project aims to integrate the work already carried out at University of Strathclyde in UK in the field of offshore renewable energy and floating offshore structure with the work performed at (a) Harbin Engineering University in China in the area of floating tidal turbine and (b) Ocean University of China in China in the field of tidal resources and environment impacts assessment. The main goal of the proposed research is to explore whether an integrated method is feasible to better understand the fundamental physics associated with a coupled floating tidal energy system through numerical framework with experimental comparisons and validations. This would then potentially provide more accurate industry design guidelines for the future commercialized FTCTs and other floating marine energy devices.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.strath.ac.uk