EPSRC Reference: |
EP/M022463/1 |
Title: |
The Plasma-CCP Network |
Principal Investigator: |
Arber, Professor T |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Physics |
Organisation: |
University of Warwick |
Scheme: |
Standard Research - NR1 |
Starts: |
01 July 2015 |
Ends: |
30 July 2021 |
Value (£): |
125,995
|
EPSRC Research Topic Classifications: |
Fusion |
Plasmas - Laser & Fusion |
Plasmas - Technological |
|
|
EPSRC Industrial Sector Classifications: |
|
Related Grants: |
|
Panel History: |
Panel Date | Panel Name | Outcome |
24 Nov 2014
|
CCP Networking Call
|
Announced
|
|
Summary on Grant Application Form |
Plasma is the dominant state of matter in the observable universe, and modern research in basic plasma physics is largely underpinned by computational plasma physics. Computational plasma physics is pivotal in efforts to develop a range of practical plasma based applications. The Plasma-CCP brings together computational plasma physicists with expertise in two major plasma application areas: magnetic confinement fusion (MCF) and laser-plasma interactions (LPI). Plasma physics lies at the heart of both application areas, but scientists tend to operate in separate communities owing to significant differences in geometrical constraints and in the physical regimes of interest. Plasma-CCP's main activity is built around core codes that are crucial for the future development of both MCF and LPI, but we note that these codes are by their very natures rather specific to each sub-discipline. The Plasma-CCP adds considerable value to the whole of plasma physics by fostering the exchange of ideas, algorithms and computer science expertise between sub-disciplines.
Specific science addressed by the MCF side of Plasma-CCP includes:
- Developing high fidelity models of plasma turbulence in the core and edge of MCF devices
- Comparing HPC simulations using state-of-the-art models against data from MCF experiments
- Exploiting turbulence models to optimise design/predict fusion performance in future devices
- Understand the transport of heat and charged particles along and across magnetic fields, interaction between plasmas, neutral gas and material surfaces.
- Modelling how the edge plasma, nearest the reactor walls, impacts on reactor performance
The LPI side of Plasma-CCP addresses a wide range of basic science and fusion related research including:
- Optimising LPI parameters for next generation hadron accelerators for cancer treatment
- Laser driven electron acceleration with applications to novel light sources
- High-field LPI of interested to high-energy density physics
- QED-plasmas as expected from the next generation of high power lasers, e.g. the Extreme Light Infrastructure (ELI) and Vulcan 20PW.
- Laser drive and plasma compression for inertial confinement fusion energy
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.warwick.ac.uk |