EPSRC Reference: |
EP/M023532/1 |
Title: |
[Newton] Advancing the efficiency and production potential of excitonic solar cells (APEX), Phase- II |
Principal Investigator: |
Upadhyaya, Professor HM |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Institute of Materials and Manufacturing |
Organisation: |
Brunel University London |
Scheme: |
Standard Research |
Starts: |
01 December 2014 |
Ends: |
31 March 2018 |
Value (£): |
1,283,497
|
EPSRC Research Topic Classifications: |
|
EPSRC Industrial Sector Classifications: |
|
Related Grants: |
|
Panel History: |
|
Summary on Grant Application Form |
UK and India are both rising stars in the promotion of Solar Energy viz. direct generation of electricity from the Sun called photovoltaics (PV). In the UK, PV is seen as a key technology to reduce the carbon footprint of electricity generation. It is also a necessity if future building standards are to be met, which will require on-site generation. PV is the only way to meet this to date. DECC has announced recently 'The Solar Strategy' which promotes the deployment of solar technologies on the existing buildings. In India PV has the added benefit that it is a highly scalable technology that can be deployed to support the grid infrastructure and indeed can be built possibly faster than conventional power plants through terrestrial solar farms and BIPV sectors. The current APEX program stems from the strategic move by the governments of the UK and India who jointly identified Solar Energy as an area of significance in providing solutions to the problem of meeting future energy needs. This partnership was aimed at linking the strengths of both countries to enhance the research capabilities of both nations.
APEX had been focusing on the development of new functional materials, device structures, materials processing and engineering of photovoltaic modules utilising excitonic solar cells (ESCs). These are a class of nano-structured solar cells based on organic nano-composites and dye-sensitised nanocrystalline TiO2 materials. The current state-of-the-art power conversion efficiency (PCE) figures ~11.4% and ~9.2% has been achieved in liquid junction dye sensitized solar cell (DSSC) and organic solar cells (OSC), respectively. In the pursuit of achieving high efficiency solid state DSSC, a new breakthrough has been established recently through our Oxford group (Prof. Henry Snaith) who achieved >17% efficient solid state devices using pervoskite solar cells. Thus, the APEX team enjoys the exceptional, world-class capability in Excitonic PV technology. The success of the program had been through its novelty, innovation and cutting edge R&D capability it possesses.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.brunel.ac.uk |