EPSRC logo

Details of Grant 

EPSRC Reference: EP/M023958/1
Title: Designer Oxides: Reactive-Oxide Molecular Beam Epitaxy System
Principal Investigator: Wahl, Professor P
Other Investigators:
Hoefling, Professor S Woollins, Professor JD King, Professor PD
Irvine, Professor J
Researcher Co-Investigators:
Project Partners:
Department: Physics and Astronomy
Organisation: University of St Andrews
Scheme: Standard Research - NR1
Starts: 01 September 2015 Ends: 31 August 2017 Value (£): 147,434
EPSRC Research Topic Classifications:
Materials Characterisation Materials Synthesis & Growth
EPSRC Industrial Sector Classifications:
Chemicals
Related Grants:
Panel History:
Panel DatePanel NameOutcome
10 Mar 2015 EPSRC Equipment Business Case March 2015 Announced
Summary on Grant Application Form
Advanced materials are a key enabling technology, lying at the heart of every new or improved device or technology application. Oxide-based materials hold enormous promise to deliver a step change across a multitude of technology sectors, with their rich physical properties making them ideal candidates to deliver transformative advances in areas spanning from heterogeneous catalysis to novel quantum electronics. To realise their full potential, however, it is necessary to develop ways to tune their physical properties in order to stablise a desired combination of materials characteristics "on demand" for a given application. We propose the creation of a world-wide unique facility for such a guided synthesis of designer oxide materials, paving the way to next generation oxide-based technologies.

The core of this new facility will be a state-of-the art reactive-oxide molecular-beam epitaxy system, enabling the growth of atomic-scale structured transition-metal oxide heterostructures and metastable thin films. It will be coupled to existing state-of-the-art spectroscopic probes including low-temperature scanning tunneling microscopy and spectroscopy and angle-resolved photoemission. This will provide unprecedented feedback on the atomic and electronic structure and the quantum many-body interactions at the heart of the exotic properties of many oxides, revealing how these can be tuned through custom materials growth to create new advanced materials. This will open new avenues for research in correlated electron systems, materials for energy storage and harvesting, catalysis, sensing, quantum technologies and nanoscience, all exploiting tailored states in artificial oxides. It will operate as a shared facility, which we aim to establish as a leading centre for the supply of custom oxide thin films within the UK.

Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.st-and.ac.uk