The objective of this proposal is to refresh and update key items of experimental equipment in activities aligned to proven strengths and critical mass in Medical Engineering and Advanced Materials at the University of Leeds.
The Institute of Medical and Biological Engineering hosts the largest and most advanced musculoskeletal simulation facility in the world. The new simulators will support three of our strategic research challenges: longer lasting joint replacements; regenerative devices and biological scaffolds for tissue repair; and, advanced simulation systems for virtual analysis and design and preclinical testing. They will deliver enhanced functionality, allowing the development and introduction of SAFER (Stratified Approaches For Enhanced Reliability) simulation methods to address the requirements of stratified and personalized medical devices, biomaterials and scaffolds. The simulators will be used for research into the tribology and wear of artificial joints, validation of novel computational methods for prediction of function, studies of wear debris and supporting biocompatibility research and studies of the tribology of biological scaffolds in natural joints, using recently developed methods.
Our research in terahertz (THz) frequency electronics and photonics is internationally leading by any criterion. Much of this activity requires a state-of-the-art and dedicated MBE semiconductor growth system. The new MBE system will allow us to protect the UK's international reputation in this field and, in particular, in the growth and exploitation of THz frequency quantum cascade lasers (QCLs). Over the next five years we will: develop state-of-the-art THz QCLs across the 1-5 THz range, maximizing operating temperature, continuous-wave performance, output power, and gain bandwidth; develop THz QCLs engineered into robust device architectures for use as, for example, local oscillators in earth-observation and planetary science missions; develop compact bench-top QCL-based technologies producing intense, narrowband and precisely controllable pulses for non-linear THz science; and, develop self-organised quantum rod structures for cavity-QED experiments, and new optically-pumped, vertical-cavity surface-emitting room temperature THz lasers.
The Leeds Electron Microscopy and Spectroscopy (LEMAS) Centre is a highly successful shared electron microscopy facility. It has high visibility nationally (providing an EPSRC open access scheme for external users since 2008) and internationally (leading the consortium that formed the UK facility at SuperSTEM Daresbury). One of the next great challenges is apply high-resolution imaging and microanalytical techniques to beam sensitive materials, including advanced hybrid materials comprising organic and inorganic components. These are increasingly employed to develop new device and product functionalities. The specification of the new microscope is unique and designed to enable fast mapping of frozen specimens at high accelerating voltage to preserve their chemistry and structure whilst extracting nanostructural information.
We are internationally recognised in spintronics and magnetic materials, with recent appointments extending our materials expertise to include organic molecules, piezoelectrics, topological insulators and superconductors. The new deposition tool will ensure we can continue to supply top quality thin film materials to the UK and internationally, as well as underpinning a general theme of spintronic meta-materials. The functional properties of meta-materials emerge through the design and engineering of the constituent material combinations. With our broad background that includes the ability to structure materials at the nanoscale so that cooperative behaviour arises, we will apply this capability to questions in strategic areas such as quantum effects for new technology, beyond CMOS electronics, energy efficient electronics, and new tools for healthcare.
|