EPSRC Reference: |
EP/M507179/1 |
Title: |
A Low Cost, High Capacity, Smart Residential Distribution Network Enabled By SiC Power Electronics |
Principal Investigator: |
Cross, Dr A |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Sch of Engineering and Applied Science |
Organisation: |
Aston University |
Scheme: |
Technology Programme |
Starts: |
25 March 2015 |
Ends: |
31 January 2017 |
Value (£): |
292,576
|
EPSRC Research Topic Classifications: |
Power Electronics |
Sustainable Energy Networks |
|
EPSRC Industrial Sector Classifications: |
Manufacturing |
Electronics |
Energy |
|
|
Related Grants: |
|
Panel History: |
|
Summary on Grant Application Form |
One of the key challenges facing the UK electrical Distribution Network Operators (DNOs) today is the Increasing demand
for power being placed on residential networks e.g. general load growth, the proliferation of electrical vehicles (EVs) and
electrified heat. At the same time, there are problems associated with voltage limit violations caused by an increase in the
connection of distributed generation (DG) and energy storage devices. This project follows on from a TSB Feasibility Study
which showed that a cost effective solution to these problems can be achieved on the existing infrastructure by increasing
the local network phase voltage to 400 V (existing cable is rated at 600V). To step the voltage back down to 230 V at each
house, DNO-owned, low-cost, 99% efficient power electronic converters (PECs) will need to be installed in the meter-box.
Our previous study showed that the 99% efficiency was essential to avoid over-heating in the meter-box and hence new,
low-cost SiC devices were mandatory. However, the cost of existing commercially available SiC is very high, which
conflicts with the need for low-cost. Therefore this project will consider a new, highly innovative fabrication technique for
SiC power devices namely 3C SiC on Silicon. This system will not only increase network capacity, but also provide
optimised connections for emerging EV charging, DG and energy storage - the "smart-grid". The project will develop a PEC
prototype which will be deployed by Western Power Distribution in a small-scale demonstration of the project.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.aston.ac.uk |