EPSRC Reference: |
EP/N007050/1 |
Title: |
Self-repairing Hardware Paradigms based on Astrocyte-neuron Models |
Principal Investigator: |
Halliday, Dr D |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Electronics |
Organisation: |
University of York |
Scheme: |
Standard Research |
Starts: |
01 October 2015 |
Ends: |
31 October 2019 |
Value (£): |
683,915
|
EPSRC Research Topic Classifications: |
Artificial Intelligence |
Electronic Devices & Subsys. |
Fundamentals of Computing |
|
|
EPSRC Industrial Sector Classifications: |
|
Related Grants: |
|
Panel History: |
Panel Date | Panel Name | Outcome |
02 Jun 2015
|
EPSRC ICT Prioritisation Panel - Jun 2015
|
Announced
|
|
Summary on Grant Application Form |
The human brain is remarkable in its ability to self-repair, for example following stroke or injury. Such self-repair results from a range of distributed and fine-grained mechanisms which act in tandem to ensure that the neurones (the basic building blocks in the brain) continue to function in as close to a normal state as possible.
In contrast modern electronic systems design typically relies on a single controller or processor, which has very limited self-repair capabilities. There is a pressing need to progress beyond current approaches and look for inspiration from biology to inform electronic systems design.
Recent studies have highlighted that interactions between astrocytes (a type of glial cell) and neurones in the brain provide a distributed cellular level repair capability where faults that impede or stop neuronal firing can be repaired by a re-adjustment of the local weights of connections between neurones in the brain.
This project aims to exploit these recent findings and develop a new generation of self-repairing algorithms by taking inspiration from these results to design a new generation of "astro-centric" algorithms. To achieve this we will include components representing both neurones and astrocytes in our electronic systems and model the interactions between these in such a way as to capture the distributed repair capabilities seen in the biological system.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.york.ac.uk |