EPSRC Reference: |
EP/N009797/1 |
Title: |
Low carbon climate-responsive Heating and Cooling of Cities (LoHCool) |
Principal Investigator: |
Short, Professor A |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Architecture |
Organisation: |
University of Cambridge |
Scheme: |
Standard Research - NR1 |
Starts: |
01 October 2015 |
Ends: |
31 March 2019 |
Value (£): |
798,987
|
EPSRC Research Topic Classifications: |
|
EPSRC Industrial Sector Classifications: |
|
Related Grants: |
|
Panel History: |
Panel Date | Panel Name | Outcome |
09 Jun 2015
|
Low Carbon Cities China
|
Announced
|
|
Summary on Grant Application Form |
LoHCool focuses on topic T1 'Delivering economic and energy-efficient heating and cooling to city areas of different population densities and climates'. It confronts directly the conundrum of offering greater winter and summer comfort in a Continental climate zone whilst mitigating what would be a carbon penalty of prodigious proportions. It concentrates on recovering value from the existing building stock, some 3.4 Billion m2 in which dwell and work some 550 Million citizens. It is highly cross-disciplinary involving engineers, building scientists, atmospheric scientists, architects and behavioural researchers in China and UK measuring real performance in new and particularly in existing buildings in Chinese cities to investigate the use of passive and active systems within integrated design and re-engineering. It focuses on the very challenging dynamic within China's Hot Summer/Cold Winter HSCW climate zone. It aims to enable the much desired improvements in living conditions and comfort levels within buildings through developing a keen understanding of the current heating and cooling technologies and practices in buildings by monitoring, surveying and measuring people's comfort and capturing this understanding through developing systems modelling including energy simulations. It will borrow on UK research for comparative purposes, for example work examining the current and future environmental conditions within the whole National Health Service (NHS) Hospital Estate in England and the practical economic opportunities, very considerable, for significant improvement whilst saving carbon at the rate required by ambitious NHS targets. It will propose detailed practical and economic low and very low carbon options for re-engineering the dominant building types which we will identify in a series of cities, as developed with local stakeholders, contractors and building professionals, exploring economic and energy-efficient low carbon district heating and cooling systems. Finally, it will test them in the current climate, 'current' extreme events, future climates and will estimate the carbon implications and cost of widespread implementation. Findings for the existing stock will be equally applicable to new-build, in many ways a simpler prospect.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.cam.ac.uk |