EPSRC Reference: |
EP/N024540/1 |
Title: |
Novel adsorbents applied to integrated energy-efficient industrial CO2 capture |
Principal Investigator: |
Maroto-Valer, Professor MM |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Sch of Engineering and Physical Science |
Organisation: |
Heriot-Watt University |
Scheme: |
Standard Research |
Starts: |
01 July 2016 |
Ends: |
31 January 2020 |
Value (£): |
985,463
|
EPSRC Research Topic Classifications: |
|
EPSRC Industrial Sector Classifications: |
|
Related Grants: |
|
Panel History: |
Panel Date | Panel Name | Outcome |
17 Feb 2016
|
Industrial CCS
|
Announced
|
|
Summary on Grant Application Form |
The UK Government has an ambitious target to reduce CO2 emissions by 80% by 2050. Industrial processes account for 25% of total EU CO2 emissions, and moreover, they are already operating at or close to the theoretical limits of efficiency. Therefore, CO2 capture and storage (CCS) is the only technology that can deliver the required emission reductions. However, efficiency and capital cost penalties associated with CO2 capture are hindering the deployment of CCS. There is an opportunity here for industrial CCS to operate at a wider range of temperatures and to integrate available thermal streams with heat required for on-site sorbent regeneration.
This multidisciplinary proposal unites leading engineers and scientists from the Universities of Heriot-Watt, Hull and Newcastle to realise our vision of integrating novel hydrotalcite solid sorbents with advanced heat integration processes for industrial CO2 capture. Hydrotalcite materials present a big potential for industrial CCS, as they show faster kinetics and better regenerability over other high temperature sorbents; however, their application in industrial capture processes remains largely unexplored. We will research novel methodologies to enhance and tailor performance of hydrotalcites for CO2 capture over a wide range of conditions needed in industrial processes. We will also address the challenge of designing a suitable process that combines the roles of heat management (heat recovery for desorption) and mass transfer (ad- and desorption) across a range of process conditions (temperature, pressure, humidity, gas constituents) with a degree of flexibility that is economically and technically viable.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.hw.ac.uk |