EPSRC Reference: |
EP/N031563/1 |
Title: |
High Performance Buffers for RF GaN Electronics |
Principal Investigator: |
Kuball, Professor M |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Physics |
Organisation: |
University of Bristol |
Scheme: |
Standard Research |
Starts: |
17 November 2016 |
Ends: |
16 May 2020 |
Value (£): |
760,102
|
EPSRC Research Topic Classifications: |
Electronic Devices & Subsys. |
|
|
EPSRC Industrial Sector Classifications: |
|
Related Grants: |
|
Panel History: |
Panel Date | Panel Name | Outcome |
15 Mar 2016
|
EPSRC ICT Prioritisation Panel - Mar 2016
|
Announced
|
|
Summary on Grant Application Form |
AlGaN/GaN high electron mobility transistors (HEMTs) are a key enabling technology for future power conditioning applications in the low carbon economy, and for high efficiency military and civilian microwave systems. GaN-on-Si is highly attractive as a low cost, medium performance technology platform which has been proved to be usable even up to the W-band. The main down-sides of Si are the low bandgap and hence resistive lossy substrate especially at modest elevated temperatures, the vulnerability of the Si to unintentional doping with gallium during epitaxy causing RF losses, and the somewhat restricted power handling resulting from the relatively low thermal conductivity of the Si compared to the 4" SiC growth substrates currently used. However the cost benefits are dramatic allowing 6" or even 8" high volume wafer processing. 6" GaN-on-Si epitaxy is already available driven by the emerging GaN-on-Si power switch market, however it is optimised for high voltage, switched-mode operation. Improved RF power amplifier (PA) efficiency using GaN-on-Si, which is the focus of this proposal, would reduce the transistor temperature rise, reduce the substrate losses and deliver a low-cost high-performance technology as it would reduce the transistor temperature rise and reduce the substrate losses. The advance that is required is an optimised RF specific GaN-on-Si transistor architecture, which requires detailed understanding of electronic traps introduced into the GaN buffer of these devices by iron, carbon and carbon/iron co-doping, which is presently lacking. The key aim of this proposal is to control and model the device capacitances and conductances using novel epitaxial design of the GaN buffer, as this is key to delivering improved efficiency, gain and linearity in RF amplifiers.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.bris.ac.uk |