EPSRC Reference: |
EP/N032268/1 |
Title: |
Towards delay, energy And spectrum-efficient Next Generation wireless netwOrks (TangO) |
Principal Investigator: |
musavian, Dr l |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Computer Sci and Electronic Engineering |
Organisation: |
University of Essex |
Scheme: |
First Grant - Revised 2009 |
Starts: |
01 December 2016 |
Ends: |
31 March 2018 |
Value (£): |
94,862
|
EPSRC Research Topic Classifications: |
RF & Microwave Technology |
|
|
EPSRC Industrial Sector Classifications: |
|
Related Grants: |
|
Panel History: |
|
Summary on Grant Application Form |
Higher rates, lower latencies, and lower energy consumptions: Future communications systems and most of their applications rely on significant improvement in these three directions which are conflicting in nature. Fast and reliable communication infrastructure is essential for advancements of various industries: from mobile broadband to intelligent automotive cars, from smart cities to smart grids, or from telemedicine to haptic communications. These applications are vital for higher human life quality and rapid economic growth. The prospect of fast future communications will not be possible unless a fine tuning between all of the above three conflicting requirements is achieved, which has proved to be challenging over the past years.
Adaptive radio resource allocation (RRA) techniques that efficiently manage the system resources have shown promising improvements when considering only one or two of these directions. On the other hand, energy harvesting technologies are emerging as a promising solution for reducing energy consumption of the communication devices, while maintaining the system throughput. Despite the challenging nature of improving the system performance in all of the above three directions, because of the recent progress in the adaptive RRA techniques and energy harvesting technologies, it is now the time to tackle this challenge. Coupling the RRA techniques and energy harvesting technologies has a great scope to significantly improve the overall system performance, which is yet to be exploited. This project aims at developing novel cross-layer RRA techniques that benefit from energy harvesting technologies and optimally tune the system parameters to flexibly optimize the trading between rate, delay and energy consumption.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.sx.ac.uk |