EPSRC Reference: |
EP/N033736/1 |
Title: |
Printable Micro-rockets for Rapid Medical Diagnosis and Biomarker Detection |
Principal Investigator: |
Ebbens, Dr S |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Chemical & Biological Engineering |
Organisation: |
University of Sheffield |
Scheme: |
EPSRC Fellowship |
Starts: |
30 November 2016 |
Ends: |
30 June 2019 |
Value (£): |
483,709
|
EPSRC Research Topic Classifications: |
Manufacturing Machine & Plant |
Med.Instrument.Device& Equip. |
Med.Instrument.Device& Equip. |
|
|
EPSRC Industrial Sector Classifications: |
|
Related Grants: |
|
Panel History: |
Panel Date | Panel Name | Outcome |
16 May 2016
|
HT Impact Fellowships Interviews
|
Announced
|
|
Summary on Grant Application Form |
Medical diagnostic tests performed in high throughput, time critical NHS hospital laboratories are key to ensuring that clinicians can deliver high quality patient care. An important type of test, providing diagnosis for a wide range of diseases and illnesses, including cancer and heart problems, are immunoassays. These assays are based on nature's exquisite recognition apparatus: anti-bodies. Immunoassays involve attaching anti-bodies to a detector surface, waiting for the analyte (e.g. protein biomarkers or specific cells) of interest to become bound at the surface, and finally using electrical or optical methods to read-out the test result. However, due to the low concentration of many diagnostic analytes, the time spent waiting for sufficient amounts of analyte to diffuse to the detector to enable read-out can be significant. The consequence of these long incubation times is severe: for example automated hospital instruments that can handle thousands of samples per hour are rate limited by up to twenty minute waits for the immunoassay process to complete. As well as reducing throughput for routine analysis, these delays hamper the task of returning time critical diagnostic information to clinicians, such as screening for heart problems in patients with chest pain. Slow accumulation of analyte at an anti-body detector also limits developing methods that rely on isolating rare cells, such as circulating tumour cells to indicate the progression of cancer and enable personalised medicine.
In this context, it is clear that the challenge of speeding up the rate at which analytes reach the detector is great, and that successfully achieving this can have significant Healthcare impact.
Here we propose to develop a new approach to achieve rapid analyte detection, by exploiting micro-rockets; small scale devices that can generate rapid motion within fluids. Micro-rockets are powered by the asymmetrical release of bubbles from their surface. These bubbles are generated by enzymes decomposing fuel molecules in the surrounding solution. Micro-rockets will be used to speed up immunoassays in two ways. Firstly, micro-rockets' rapid motion and bubble generation stirs solutions, which is otherwise hard to achieve at small scales. This will be used to reduce the incubation times for immunoassays where anti-bodies are attached to the inside surfaces of a "micro-well" containing the analytical solution. By agitating the solution with micro-rockets, analytes will contact the well surfaces more frequently, speeding up detection. In the second method, the micro-rockets themselves will be covered with anti-bodies and used as a mobile detector, rapidly moving throughout the analytical sample. The fast motion will allow dilute quantities of analyte to be rapidly located. Analyte binding rate to anti-bodies and selectivity will also be improved by using a rapidly moving detector surface. At the end of the incubation period, magnets will be used to retrieve the dispersed rockets to enable analyte concentration to be determined using existing optical or electrical methods. Efficiently developing new micro-rockets with the required functions of analyte recognition and magnetic control will be aided by using ink-jet printing to allow micro-rocket composition, size, shape to be easily controlled and optimised.
To demonstrate the utility of micro-rockets, experiments will be conducted to compare the speed at which micro-rockets can acquire analytes, compared to the existing diagnostic methods used by hospitals. Two diagnostic tests will be considered: one for protein molecules called "Troponins" that signal recent cardiac damage, and the second for circulating tumour cells. Establishing proof of micro-rocket effectiveness in this way will be a key step to attract interest from industrial partners who can assist the development of this technology to allow eventual deployment in hospitals.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.shef.ac.uk |