EPSRC logo

Details of Grant 

EPSRC Reference: EP/N03516X/1
Title: Vacancy-Rich Silicon as a Flexible Thermoelectric Material
Principal Investigator: Bennett, Dr N
Other Investigators:
Researcher Co-Investigators:
Project Partners:
European Space Agency (UK) Power Textiles Ltd
Department: Sch of Engineering and Physical Science
Organisation: Heriot-Watt University
Scheme: Standard Research
Starts: 01 September 2016 Ends: 28 February 2019 Value (£): 202,728
EPSRC Research Topic Classifications:
Materials Characterisation Materials Synthesis & Growth
EPSRC Industrial Sector Classifications:
Energy
Related Grants:
EP/N035216/1
Panel History:
Panel DatePanel NameOutcome
12 May 2016 EPSRC Physical Sciences Materials and Physics - May 2016 Announced
Summary on Grant Application Form
Over 15 TW of power is continually lost worldwide in the form of waste heat. Thermoelectric generators (TEGs) offer one method of reducing this waste, by harvesting the heat and using it to create electrical power. While the conversion efficiency of TEG devices is often <10%, the sheer abundance of waste heat, offering a free fuel source, makes TEGs appealing for many diverse applications. This proposal is aimed at thin-film TEGs (active thickness, 1-20 micrometres), forecast to be a core market sector in the future, with the advent of flexible/wearable electronics, and with the increased uptake of sensors, all of which require low-power. If TEGs can be produced at low-cost and with increased functionality (e.g. flexible), their potential is significant to act as a power source for future electronic devices that improve our quality of life. As an alternative to generators, the same thin-film technology can also be used in reverse for small-scale heating/cooling applications, with thin-film modules already used for chip-cooling in high-performance electronics (space, military and aerospace applications). Silicon-based technologies underpin the global electronics industry due to their many practical advantages. These same benefits would extend to TEGs were it not for the poor thermoelectric conversion performance of silicon. This project will undertake pioneering materials work in the area of "vacancy-rich silicon" - essentially silicon with many atoms removed at the atomic level - building on initial work carried-out by us, which has shown vacancy-rich silicon to be competitive with other state-of-the-art thermoelectric materials. The realisation of flexible thin-film TEGs based on vacancy-rich silicon will represent a transformative step applicable to numerous applications, including power generation and heating/cooling within clothing, as targeted specifically by us in co-operation with our industry partners.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.hw.ac.uk