EPSRC logo

Details of Grant 

EPSRC Reference: EP/P002188/1
Title: Predictive Modelling of the Fundamentals of Failure in Metals
Principal Investigator: Kermode, Dr J R
Other Investigators:
Researcher Co-Investigators:
Project Partners:
Kings College London National Physical Laboratory University of Cambridge
University of Oxford
Department: Sch of Engineering
Organisation: University of Warwick
Scheme: First Grant - Revised 2009
Starts: 01 August 2016 Ends: 31 July 2018 Value (£): 100,729
EPSRC Research Topic Classifications:
Eng. Dynamics & Tribology
EPSRC Industrial Sector Classifications:
No relevance to Underpinning Sectors
Related Grants:
Panel History:
Panel DatePanel NameOutcome
02 Jun 2016 Engineering Prioritisation Panel Meeting 1 and 2 June 2016 Announced
Summary on Grant Application Form
Our lack of detailed understanding of the atomic scale mechanisms which lead to failure of metals through processes such as cracking, creep, embrittlement or fatigue is surprising, given the significant technological and economic impact that such understanding could generate. Examples of what could be achieved include designing stronger, lighter turbine blades for aeroplane engines, improved lightweight alloys for the automobile industry or improved radiation shields for the nuclear industry.

Progress to date has been limited partly because the current generation of continuum models for metal failure rely heavily on empirical methods. The overarching aim of this proposal is to develop new models to enable continuum-scale modelling of failure processes, in particular crack growth, by incorporating pre-computed first-principles information. Adding reliable probabilistic "error bars'' which incorporate the effects of model error, limited data, epistemic uncertainty and coarse-graining would help to address one of the major barriers holding back wider adoption of materials modelling in industry (cf. Innovate UK/KTN special interest group on Uncertainty Quantification and Management for High Value Manufacturing).

Realising these long-term aims first requires developing (i) accurate atomic scale models for `slow' failure processes in metals and (ii) a rigorous model reduction procedure to capture information lost during coarse graining, allowing complex microstructures to be modelled. This project addresses (i) in detail by developing new methodology to compute energy barriers with QM accuracy in systems large enough to capture stress concentration, with application to dislocation motion and crack growth in technologically relevant but still structurally simple single crystal model systems (nickel, aluminium and tungsten). Requirement (ii) will be explored via a case study to be further developed in future proposals.

The project is aligned with research areas in which the UK is a world leader: condensed matter (electronic structure), materials engineering (metals and alloys) and numerical analysis.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.warwick.ac.uk