EPSRC logo

Details of Grant 

EPSRC Reference: EP/P004040/1
Title: Context Aware network architectures for Sending Multiple Senses (CASMS)
Principal Investigator: Marshall, Professor AJ
Other Investigators:
Murray, Dr G
Researcher Co-Investigators:
Project Partners:
BBC STFC Laboratories (Grouped) Virtalis Ltd
Department: Electrical Engineering and Electronics
Organisation: University of Liverpool
Scheme: Standard Research
Starts: 01 February 2017 Ends: 26 February 2022 Value (£): 770,377
EPSRC Research Topic Classifications:
Networks & Distributed Systems
EPSRC Industrial Sector Classifications:
Communications Information Technologies
Related Grants:
EP/P004016/1
Panel History:
Panel DatePanel NameOutcome
21 Jun 2016 RIIE 2015 Call - Interviews Announced
Summary on Grant Application Form
Future networks will be expected to communicate information pertaining to more than the two senses (aural and visual) we currently use to communicate remotely. It is clear that introducing into networks the ability to carry information relating to other senses will open up an enormous potential for both new and dramatically improved applications. A collaboration involving the University of Liverpool and University College London with relevant industrial and academic partners has been created to engage in a programme of research that aims to establish a unique facility in the UK that employs dedicated high-speed network links to combine research centres in virtual and immersive reality in order to open up new capability for research into distributed VR/AR systems, and particularly to investigate how we can embed other sensory channels such as touch and smell into these applications and remotely access them. The main partner centres will also operate as gateways hubs to permit access from other research facilities; this will be demonstrated by extending the connectivity to the Virtual Engineering Centre at Daresbury, and (via NDFIS connection at UCL) to the University of Bristol.

While future VR/AR applications will require reasonably high data rates to support high definition and stereoscopic video streams and localized server updates (in real-time) of VR/AR environments, the key aspect will be ensuring that the network can deliver the different media streams (video, sound, touch, olfactory etc) within acceptable times, and can maintain synchronization between them. The ability to provide highly actuate timing for delay-sensitive HCI applications will open up a range of new research areas involving for example, HCI using multi-sensory channels, high-performance compute platforms for distributing such media-rich applications as well as the applications themselves such as advanced manufacturing and design for the automotive and avionics industries, and in assistive technologies.

The sustainability and impact (research and industrial) of CASMS will be ensured by implementing a steering committee consisting of the project partners and other members of key stakeholders, who will work with the management team to identify new research collaborations and potential partnerships, and to help disseminate and exploit the IP and other knowledge generated by this new facility.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.liv.ac.uk