EPSRC Reference: |
EP/P004253/1 |
Title: |
Steel-concrete composite beams using precast hollow-core slabs and a demountable shear connection mechanism |
Principal Investigator: |
VASDRAVELLIS, Dr G |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Sch of Energy, Geosci, Infrast & Society |
Organisation: |
Heriot-Watt University |
Scheme: |
First Grant - Revised 2009 |
Starts: |
01 December 2016 |
Ends: |
30 November 2018 |
Value (£): |
101,087
|
EPSRC Research Topic Classifications: |
|
EPSRC Industrial Sector Classifications: |
|
Related Grants: |
|
Panel History: |
|
Summary on Grant Application Form |
There is an urgent need for sustainable development in modern societies. As natural resources become more limited, and environmental pollution has reached alarming levels in many regions on the planet, man made activities need to switch to a more sustainable way of thinking and operation. Many governments worldwide have set ambitious sustainability targets for the near future. The UK government, specifically, has set as target the 80% reduction in carbon dioxide (CO2) emissions from all anthropogenic activities by 2050. The European Union has also included the drastic reduction of CO2 emissions, waste and energy consumption as first priorities in their agenda.
The construction sector can play an important role to achieving a sustainable environment, since: a) the production of new materials is an energy intensive process, which is responsible for about 15% of the global CO2 emissions; b) buildings are usually being demolished at the end of their useful life creating waste and pollution, e.g. demolition is responsible for one third of total waste in the UK, and more than half of this waste is still sent to landfill; and c) the material demands will be doubled globally by 2050 according to recent reports. In addition, recycling is not a sustainable solution, because the recycling process is still very energy intensive and requires only marginally less energy than creating materials from scratch.
A more sustainable solution is to find ways to avoid demolition of buildings at the end of their useful life. This can be done by developing innovative structural solutions that allow for the reuse of building components directly to new projects. In this way, the construction will produce less CO2 emissions (as there will be no need to manufacture new members or to recycle the old ones), much less waste will go to landfill, and the natural resources of the planet will be used more responsibly.
Steel-concrete composite buildings have a large market share (more than 70% in the UK for multi-storey offices and car parks) and more than half of them use steel-concrete composite floors, i.e. the concrete slab is mechanically connected to the steel sections, which results in more economic designs. The current practice of constructing a composite floor, however, uses a connection method between the concrete slab and the steel sections that makes their separation extremely difficult; thus, the disassembly of these buildings is highly problematic. This project proposes a novel way to connect precast concrete slabs with steel sections that offers the advantages of: a) off-site fabrication of all components; b) easy and fast installation on the construction site; c) disassembly of the composite floor; and d) direct reuse of all components in new projects.
The project will use experimental testing complemented by numerical analyses in order to develop the proposed novel structural system. Experiments will be conducted on both the slab-steel section connection system alone, in order to characterise its structural behaviour, and on large-scale composite beams replicating real beams in buildings. The experiments will provide evidence on the physical behaviour and the ultimate failure modes of the proposed system, whereas numerical simulations using advanced mathematical models will be used to study numerous geometrical configurations and generalise the results of the tests. Based on the results of the tests and the simulations, recommendations for the practical design of the proposed system will be proposed.
The project involves collaboration with leading academics and key industrial partners in order to deliver a reliable sustainable solution for composite floor systems.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.hw.ac.uk |