EPSRC Reference: |
EP/P027644/1 |
Title: |
Laser Technologies for Future Manufacturing |
Principal Investigator: |
Zervas, Professor M |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Optoelectronics Research Centre (ORC) |
Organisation: |
University of Southampton |
Scheme: |
Platform Grants |
Starts: |
01 July 2017 |
Ends: |
30 June 2022 |
Value (£): |
1,768,136
|
EPSRC Research Topic Classifications: |
Manufacturing Machine & Plant |
Optical Devices & Subsystems |
|
EPSRC Industrial Sector Classifications: |
Manufacturing |
Electronics |
|
Related Grants: |
|
Panel History: |
Panel Date | Panel Name | Outcome |
23 Feb 2017
|
Future Manufacturing Platform Grants (G)
|
Announced
|
|
Summary on Grant Application Form |
Modern manufacturing has been revolutionised by photonics. Lasers are central to this revolution, as they continue to transform the fast-changing manufacturing landscape. Photonics manufacturing represents an industry worth £10.5bn per annum to the UK economy, growing at about 8.5% annually and directly employing more than 70,000 people. UK Photonics exports are currently the 4th largest by value of any UK manufacturing sector, following automotive, aerospace and machinery exports. More importantly, UK Photonics exports more than 75% of its output relative to the UK manufacturing average of only 34%. Laser technology in particular underpins a number of leading UK industries in the aerospace, automotive, electronics, pharmaceuticals and healthcare engineering sectors. Over four decades, the Optoelectronics Research Centre at the University of Southampton has maintained a position at the forefront of photonics research. Its long and well-established track record in fibres, lasers, waveguides, devices, and optoelectronic materials has fostered innovation, enterprise, and cross-boundary multi-disciplinary activities. Advanced fibres and laser sub-systems, manufactured in Southampton by companies spun-out from the Optoelectronics Research Centre, are exported worldwide.
Working closely with UK photonics industry, our interconnected and highly synergetic group will optimally combine different laser technologies into hybrid platforms for miniaturised, efficient, low-cost, agile and reconfigurable smart laser systems with software-driven performance. This is only possible because of the controllable, stable and robust, all-solid state nature of guided-wave lasers. A smart laser looks like its electronic equivalent - a single small sealed maintenance-free enclosure with a fully controlled output that is responsive to changes in the workpiece. The laser knows what material it is processing, how the process is developing and when it is finished. It is able to adapt to changes in the materials, their shape, reflectivity, thickness and orientation. This leads to new tools that enable innovative manufacturing processes that are critical in increasing competitiveness in important manufacturing sectors. Finally, the advanced laser technologies developed within this platform are expected to have a wider impact outside the manufacturing arena, in areas such as sensing, healthcare, and the medical sectors, as well as homeland security helping to establish an important laser sovereign capability.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.soton.ac.uk |