EPSRC Reference: |
EP/P029175/1 |
Title: |
Healthy housing for the Displaced |
Principal Investigator: |
Coley, Professor D |
Other Investigators: |
Natarajan, Dr S |
Ball, Dr RJ |
Orr, Dr JJ |
Calabria-Holley, Dr J |
hasan, Dr o |
Adeyeye, Dr K |
Hart, Dr J |
Copping, Dr AG |
Sahin Burat, Dr E |
Ali, Dr O |
|
|
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Architecture and Civil Engineering |
Organisation: |
University of Bath |
Scheme: |
GCRF (EPSRC) |
Starts: |
01 May 2017 |
Ends: |
31 July 2021 |
Value (£): |
1,586,596
|
EPSRC Research Topic Classifications: |
|
EPSRC Industrial Sector Classifications: |
|
Related Grants: |
|
Panel History: |
Panel Date | Panel Name | Outcome |
17 Mar 2017
|
EPSRC GCRF 1 Meeting B - 17 March 2017
|
Announced
|
|
Summary on Grant Application Form |
Our vision is to transform the lives of displaced people encamped in extreme conditions through an engineered solution to housing that promotes a new science of shelter design. The project will entail research in five of the world's largest refugee camps. Zaatari and Azraq (Jordan), Kilis (Turkey), Mae La (Thailand), Nyarugusu (Tanzania). These have populations of up to 250,000 and hence are in many ways cities. They have summer temperatures >35degC and occasionally >40degC; in these conditions un-insulated dwellings are unable to provide safe conditions. In addition, such locations can have 1600W/m2 of solar radiation, further raising the temperature inside a dwelling, and in the case of Jordan winter temperatures of -10degC. In Thailand the high humidity is likely to be of equal importance in placing thermal stress on occupants. In addition, displacement shelters can use polymeric materials which contain a high proportion of VOCs such as plasticisers and release agents, and have poorly ventilated cooking facilities using fuels such as wood, thereby generating particulates.
Camps were once expected to be a short term solution, and this is still true in some settings. However, as witnessed in numerous locations around the globe, encampment often continues for years or decades (for example, the 340,000 strong Dadaab camp in Kenya opened in 1992). Even in natural disasters delays in rebuilding can lead to displacement camps taking on aspects of semi-permanent settlement. The challenges of survival in the immediate onset of an emergency quickly give way to concerns about the suitability of shelter over a longer timeframe. Such basic dwellings inhibit domestic life, educational delivery to the young, and development of the social relations needed for community cohesion. Often the need of traumatised people for a sense of security and privacy also goes unmet. Unfortunately, even the state of the art in current shelter provision does not adequately consider building physics, thermal comfort and air quality. There is also a general lack of attention to socio-cultural issues. Thus, for example, our pilot study in Jordan has revealed through social surveys a consistent concern amongst the displaced population with the issues of safety and privacy.
Given the diversity of potentially available building materials, climates and cultures, there will be no single shelter solution, but rather a need for a systematic process of design that is cognisant of the climate, landscape, culture, length of time the accommodation might be needed, flexibility as family size changes and portability. This project will develop such a design process by creating a new science of shelter design through engagement with aid agency staff in four countries with diverse weather, cultural conditions and political sensitivities. This will involve 1) wide scale social and indoor environment surveys in five camps; 2) the construction of a series of potential designs in the UK, in a climate chamber and in Jordan; and 3) the production of a multi-language, extreme climate building physics-based, culturally sensitive, shelter design tool for agency field staff.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.bath.ac.uk |