EPSRC Reference: |
EP/P030815/1 |
Title: |
Thermodynamics of continuously measured superconducting qubits: heat flow and control |
Principal Investigator: |
Romito, Dr A |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Physics |
Organisation: |
Lancaster University |
Scheme: |
First Grant - Revised 2009 |
Starts: |
01 July 2017 |
Ends: |
30 September 2018 |
Value (£): |
100,799
|
EPSRC Research Topic Classifications: |
Quantum Optics & Information |
|
|
EPSRC Industrial Sector Classifications: |
No relevance to Underpinning Sectors |
|
|
Related Grants: |
|
Panel History: |
Panel Date | Panel Name | Outcome |
07 Mar 2017
|
EPSRC Physical Sciences - March 2017
|
Announced
|
|
Summary on Grant Application Form |
The transformation of energy in the forms of heat and work pertains to everyday life and is a crucial aspect in the efficiency of machines. In fact, the laws of thermodynamics, which govern these energy transformations, are so fundamental that have their say in almost all branches of physics. The first law acknowledges that heat is energy to be accounted for in energy conservation. The second law of thermodynamics qualitatively distinguishes heat from other forms of energy by associating it to entropy, a measurement of the "lack of information" about a system, and by stating that entropy grows in macroscopic systems.
The generality of these statements stems from general statistical properties of macroscopic objects with a large number of degrees of freedoms. However, the technological advances in engineering and operating nanoscale objects like molecular machines, forces us to rethink the implications of thermodynamics for microscopic few-particle systems, where thermal fluctuations are significant. Here the laws of thermodynamics can be reformulated in terms of probabilistic equations, known as fluctuation theorems, which account for rare microscopic events, like those where entropy decreases, which are instead washed away by statistics in the macroscopic word.
The formulation and experimental verification of these theorems have been a success of stochastic thermodynamics in the past decade. The nanoscale world, however, challenges us further with quantum mechanical processes emerging at this scale, and devices built upon them. How do we include quantum fluctuations into the laws of thermodynamics? Current research is advancing on this front with some success by analyzing quantum machines operating between classical thermal sources, to identify genuine quantum effects and generalize the definitions of heat and work for quantum processes. The main problem is that in quantum mechanics even measuring the energy of an isolated system is a deterministic process, and that measuring a specified variable, e.g. work along quantum evolution, comes with unavoidable back-action that needs to be taken into account.
In this project, we set aside the usual thermodynamic setup where a system is coupled to a thermal bath and focus instead on the measurement process, where a detector monitoring the system is the reservoir with which the system exchanges energy. This kind of configuration allows us to focus on the role of quantum measurement, and it brings new aspects into play, like the fact of dealing with an out-of-equilibrium environment, and the thermodynamic role of the information gained during the measurement. It also comes with the possibility of short-term experimental realizations, since quantum detector's readout is experimentally available, as opposed to thermal baths' readout.
The project will set-up the tools to deal with the thermodynamics of quantum measurement and use them to engineer heat flow detectors and possibly heat flow engineering at the nanoscale.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.lancs.ac.uk |